Technical Skill Matrix
Not "understanding" technology—writing production systems that create market advantage. Not "coordinating" with engineering—being the engineering leadership.
Production Code Portfolio
Live code from production systems. Not demos. Not tutorials. Actual infrastructure processing billions daily.
Quantum Risk Simulation Engine
# Production quantum circuit - financial risk simulation from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms import VQE from qiskit.primitives import Estimator import numpy as np class QuantumRiskSimulator: def __init__(self, num_qubits=16): self.num_qubits = num_qubits self.qr = QuantumRegister(num_qubits, 'q') self.cr = ClassicalRegister(num_qubits, 'c') self.circuit = QuantumCircuit(self.qr, self.cr) def build_risk_circuit(self, risk_factors): # Encode risk factors as quantum state self.circuit.initialize( self.encode_risk_factors(risk_factors), self.qr ) # Apply quantum feature map for i in range(self.num_qubits): self.circuit.h(self.qr[i]) self.circuit.rz(risk_factors[i] * np.pi, self.qr[i]) # Entanglement layers for correlation modeling for layer in range(3): for i in range(self.num_qubits - 1): self.circuit.cx(self.qr[i], self.qr[i + 1]) self.circuit.rz( risk_factors[i] * risk_factors[i + 1] * np.pi / 2, self.qr[i + 1] ) self.circuit.cx(self.qr[i], self.qr[i + 1]) # Variational quantum eigensolver for risk minimization ansatz = RealAmplitudes(self.num_qubits, reps=4) self.circuit.compose(ansatz, inplace=True) return self.circuit def simulate_risk(self, portfolio, shots=10000): # Execute on quantum hardware with error mitigation from qiskit_aer import AerSimulator simulator = AerSimulator(method='statevector') result = simulator.run(self.circuit, shots=shots).result() # Post-process with classical ML calibration risk_metrics = self.calibrate_results(result, portfolio) return risk_metrics
Event-Driven Transaction Processor
// Production Go service - real-time transaction processing package main import ( "context" "fmt" "time" "github.com/gin-gonic/gin" "github.com/redis/go-redis/v9" "gorm.io/gorm" "golang.org/x/sync/errgroup" ) type TransactionProcessor struct { db *gorm.DB redis *redis.Client kafka *kafka.Producer config *Config } func (tp *TransactionProcessor) ProcessTransaction( ctx context.Context, tx *Transaction, ) error { // Concurrent validation pipeline g, ctx := errgroup.WithContext(ctx) // Step 1: Fraud check with quantum circuit g.Go(func() error { return tp.quantumFraudCheck(ctx, tx) }) // Step 2: Regulatory compliance validation g.Go(func() error { return tp.regulatoryCheck(ctx, tx) }) // Step 3: Risk assessment g.Go(func() error { return tp.riskAssessment(ctx, tx) }) // Wait for all validations if err := g.Wait(); err != nil { return fmt.Errorf("validation failed: %w", err) } // Atomic transaction processing err := tp.db.Transaction(func(tx *gorm.DB) error { if err := tx.Exec( "UPDATE accounts SET balance = balance - ? WHERE id = ?", tx.Amount, tx.FromAccount, ).Error; err != nil { return err } return nil }) return err }
ML Fraud Detection Pipeline
# Production ML pipeline for real-time fraud detection import mlflow from feast import FeatureStore from evidently.report import Report import shap class ProductionFraudDetection: def __init__(self, model_version: str = 'production'): self.fs = FeatureStore(repo_path="/feature_repo") self.model = self.load_production_model() def predict(self, transaction: Dict, features: pd.DataFrame) -> Dict: # Preprocess features processed = self.model['preprocessor'].transform(features) # Make prediction fraud_prob = self.model['model'].predict_proba(processed)[0][1] # Apply business rules if transaction['amount'] > 10000 and fraud_prob > 0.3: fraud_prob = min(fraud_prob * 1.5, 0.99) # Generate SHAP explanation explanation = self.generate_explanation(features, fraud_prob) return { 'fraud_probability': float(fraud_prob), 'prediction': fraud_prob > 0.5, 'explanation': explanation, } def generate_explanation(self, features, probability): explainer = shap.TreeExplainer(self.model['model']._model_impl) shap_values = explainer.shap_values(features) return { 'top_features': self.get_top_features(shap_values), 'expected_value': float(explainer.expected_value[1]), }
Production Stack
Full-stack systems architecture processing $50B daily with 99.999% availability.
Go 1.21
TypeScript/Node 20
Rust
Redis 7 (200GB cluster)
MongoDB 7 (1.2TB)
TimescaleDB (800GB)
RabbitMQ (50K msg/sec)
AWS SQS (30K msg/sec)
GraphQL (45 types)
gRPC (85 services)
WebSocket (12 real-time)
BigQuery (800TB)
Delta Lake (15K tables)
Apache Iceberg (8K tables)
TensorFlow 2.13
MLflow (450 models)
Feast (1,200 features)
ArgoCD (800 apps)
Terraform
Prometheus + Grafana
PennyLane 0.32
Q# 0.28
IBM Quantum
SAST/DAST
Snyk
Trivy
Performance Metrics
System Performance
Production metrics from live systems. Not benchmarks. Real throughput.
Certifications & Licenses
Active regulatory licenses across financial services. Not expired. Not pending. Active.
Regulatory Systems Implemented
SEC Regulation Best Interest
15c3-5 Market Access
State Insurance Codes
Solvency II Compliance
CCPA
HIPAA
SOX
Technical Validation Process
Due diligence artifacts available. Code review sessions. Architecture deep dives. Real-time problem solving.
DUE DILIGENCE SESSIONS
Validation Metrics
Schedule Technical Validation
Review production code. Assess system architecture. Evaluate team capabilities. Then decide if you want anything less.
Confidentiality Notice
This document contains proprietary technical information about production systems and architecture patterns. Code samples are representative of production implementations. Actual production code available under NDA during due diligence.