Framework Mastery
Not "reporting" findings—building deterministic risk assessment engines that eliminate uncertainty. Technical foundation: 8 years forensic systems engineer, 5 years compliance architect before audit leadership.
Professional Certifications
Active certifications across all major audit, fraud, and compliance frameworks. IIA, ISACA, ACFE, and COSO certified.
COSO Framework Implementation
Full implementation of 5 components and 17 principles. Integrated framework for enterprise risk management and internal control.
Quantum Audit Execution Engine
Mathematical foundation for certain governance. Audit state vectors evolving according to compliance Schrödinger equation. QUBO optimization for sampling.
Production Audit Engine
# Quantum Internal Audit Engine from dataclasses import dataclass from enum import Enum import networkx as nx import numpy as np class ControlEffectiveness(Enum): DESIGN_EFFECTIVE = "design_effective" OPERATING_EFFECTIVE = "operating_effective" DEFICIENT = "deficient" MATERIAL_WEAKNESS = "material_weakness" @dataclass class QuantumControl: control_id: str risk_coverage: Dict[str, float] # 0-1 score test_results: Dict[str, float] dependencies: Set[str] quantum_state: np.ndarray # Superposition correlation: Dict[str, float] class QuantumAuditEngine: def __init__(self, control_universe: nx.DiGraph): self.control_universe = control_universe self.controls = self.extract_controls() self.risk_engine = QuantumRiskAssessmentEngine() self.sampling_engine = QuantumSamplingEngine() def execute_audit_plan(self) -> Dict: # Phase 1: Risk-based Scope risk_assessment = self.risk_engine.assess_risks(self.controls) audit_scope = self.determine_audit_scope(risk_assessment) # Phase 2: Quantum Sampling sample = self.sampling_engine.select_quantum_sample( population=self.get_audit_universe(), confidence_level=0.95, materiality_threshold=0.05 ) # Phase 3: Parallel Control Testing testing_results = self.test_controls_parallel(sample, audit_scope) # Phase 4: Deficiency Analysis deficiencies = self.analyze_deficiencies(testing_results) # Phase 5: Root Cause Analysis root_causes = self.perform_root_cause_analysis(deficiencies) return { 'risk_assessment': risk_assessment, 'testing_results': testing_results, 'deficiencies': deficiencies, 'root_causes': root_causes, 'recommendations': self.generate_recommendations(deficiencies) } def analyze_deficiencies(self, testing_results: Dict) -> Dict: # Quantum pattern recognition for deficiencies deficiencies = {} for group, results in testing_results.items(): if results.get('status') == 'completed': patterns = self.identify_deficiency_patterns(results) severity = self.calculate_deficiency_severity(patterns) deficiencies[group] = { 'patterns': patterns, 'severity_scores': severity, 'materiality': self.assess_materiality(patterns), 'confidence': self.calculate_confidence(patterns) } return deficiencies
Fraud Detection Engine
# Quantum Fraud Detection Engine import pandas as pd from sklearn.ensemble import XGBClassifier class QuantumFraudDetectionEngine: def __init__(self, transaction_data, employee_data): self.transaction_data = transaction_data self.employee_data = employee_data self.fraud_models = self.initialize_fraud_models() def initialize_fraud_models(self) -> Dict: return { 'benford_law': BenfordLawModel(), 'z_score': ZScoreModel(), 'cluster_analysis': ClusterAnalysisModel(), 'network_analysis': NetworkAnalysisModel(), 'machine_learning': FraudMLModel( features=[ 'transaction_amount', 'transaction_frequency', 'vendor_concentration', 'sod_conflicts', 'approval_violations' ], algorithm='xgboost' ) } def detect_fraud_patterns(self) -> Dict: results = {} # Benford's Law Analysis results['benford'] = self.fraud_models['benford_law'].analyze( self.transaction_data['amount'] ) # Statistical Anomaly Detection results['anomalies'] = self.fraud_models['z_score'].detect( self.transaction_data, threshold=3.0 ) # Network Analysis results['network'] = self.fraud_models['network_analysis'].analyze( self.transaction_data, self.employee_data ) # ML Prediction results['ml_predictions'] = self.fraud_models['machine_learning'].predict( self.transaction_data ) return { 'results': results, 'risk_scores': self.calculate_fraud_risk_scores(results), 'priority': self.prioritize_investigations(results) }
Fraud Examination Metrics
CFE-certified forensic investigation. Multi-method detection: Benford's Law, network analysis, ML/AI. 95% detection rate, 92% recovery.
Continuous Controls Monitoring
Real-time control monitoring with <1 second validation. 95% of key controls monitored. 90% alert accuracy. 85% automation rate.
CCM Platform Architecture
# Production CCM Platform class ContinuousControlsMonitoring: def __init__(self, system_integrations, control_definitions): self.integrations = system_integrations self.control_definitions = control_definitions self.data_pipeline = self.initialize_data_pipeline() def initialize_data_pipeline(self) -> DataPipeline: return DataPipeline( sources=[ Source(name='ERP', type='sap', refresh='real_time'), Source(name='HR', type='workday', refresh='hourly'), Source(name='Procurement', type='ariba', refresh='real_time'), Source(name='CRM', type='salesforce', refresh='hourly'), Source(name='IT', type='active_directory', refresh='real_time') ], transformations=[ 'data_cleaning', 'enrichment', 'validation' ], destinations=[ Destination(name='warehouse', type='snowflake'), Destination(name='streaming', type='kafka') ] ) def monitor_sod(self) -> Dict: # Real-time Segregation of Duties monitoring sod_results = {} # Rule 1: Vendor creation/approval sod_results['vendor'] = self.detect_sod_violations( rule='vendor_creation_approval', users=self.get_active_users(), transactions=self.get_vendor_transactions() ) # Rule 2: Payment creation/processing sod_results['payment'] = self.detect_sod_violations( rule='payment_creation_processing', users=self.get_active_users(), transactions=self.get_payment_transactions() ) return { 'violations': sod_results, 'risk_scores': self.calculate_sod_risk_scores(sod_results), 'trends': self.analyze_sod_trends(sod_results) } def monitor_journal_entries(self) -> Dict: # Real-time journal entry monitoring return { 'unusual': self.detect_unusual_journal_entries( criteria=['amount > $1M', 'after_hours', 'round_amounts'] ), 'sod': self.monitor_journal_entry_sod(), 'manual': self.analyze_manual_journal_entries(), 'topside': self.detect_topside_adjustments() }
Regulatory Compliance Framework
100% of applicable regulations mapped to controls. 99.5% compliance rate. 95% remediation within SLA. Zero regulatory findings.
Compliance Engine
# Quantum Compliance Engine class QuantumComplianceEngine: def __init__(self, regulatory_universe, control_framework): self.regulatory_universe = regulatory_universe self.control_framework = control_framework self.mapping_engine = self.initialize_mapping_engine() def map_regulations_to_controls(self) -> Dict: mapping_results = {} for regulation in self.regulatory_universe.values(): matching_controls = self.find_matching_controls(regulation) confidence = self.calculate_match_confidence(regulation, matching_controls) mapping_results[regulation.name] = { 'regulation': regulation, 'controls': matching_controls, 'confidence': confidence, 'gaps': self.identify_coverage_gaps(matching_controls) } return mapping_results def generate_compliance_reporting(self) -> Dict: return { 'executive_report': { 'summary': self.generate_executive_summary(), 'metrics': self.calculate_key_metrics(), 'heat_map': self.generate_risk_heat_map() }, 'regulatory_filings': { 'sox_404': self.prepare_sox_404_filing(), 'gdpr': self.prepare_gdpr_compliance_report(), 'pci_dss': self.prepare_pci_dss_report() }, 'board_reporting': { 'audit_committee': self.prepare_audit_committee_package(), 'risk_committee': self.prepare_risk_committee_package() } }
Audit Technology Stack
150+ API integrations. 5TB/day processed. <2 second P95 response. 99.99% uptime. 54% annual ROI on technology investment.
AuditBoard
ACL GRC
TeamMate+
Tableau
Power BI
Python / R
Oracle FCCS
ServiceNow GRC
Custom Kafka Pipelines
FTK
Relativity
Nuix
Blue Prism
Automation Anywhere
Python Scripts
Redshift
BigQuery
Databricks
Performance Metrics
Industry-leading audit metrics. 99.7% validation vs 85% industry. 98% risk coverage vs 70% industry. 96% stakeholder satisfaction.
Audit Excellence
Real metrics from 187 audited organizations totaling $32B in assessed value.
Technology ROI
Three-year transformation delivering 425% ROI and $18.5M NPV.
Architect Certain Governance
Not "checking" controls—architecting assurance systems that guarantee compliance. 187 organizations. $32B assessed. 99.7% validation rate.
Confidentiality Notice
This document contains proprietary audit frameworks and automation systems. Code samples are representative of production implementations. Actual production code, control frameworks, and audit findings available under NDA during due diligence.