Security Architecture Overview
The Zi Stack implements a multi-layered security architecture combining classical zero-trust principles with quantum-native protections. Our topological quantum computation approach provides inherent fault tolerance through non-Abelian anyons, while post-quantum cryptographic primitives ensure long-term data protection against quantum adversaries.
QUANTUM SECURITY ARCHITECTURE
LAYER 1: Physical Security
Topological QPU: Majorana Modes
Cryogenic HSM: FIPS 140-3 Level 3
Faraday Cage: EMI Shielding
LAYER 2: Quantum Cryptography
QKD: BB84/E91 Device-Independent
Quantum Signing: BLISS/Dilithium
Entanglement: Purification
LAYER 3: Post-Quantum Classical
Key Encapsulation: CRYSTALS-Kyber
Signatures: SPHINCS+ Hash-Based
Symmetric: AES-256-GCM
LAYER 4: Zero-Trust Fabric
Identity: SPIFFE/SPIRE Workload ID
Transport: mTLS Everywhere
Policy: OPA/Rego Engine
Topological Quantum Protection
We encode quantum information in topologically protected states using non-Abelian anyons. This provides inherent fault tolerance—errors require global operations to corrupt data, making local noise harmless.
Fibonacci Fusion Rules
Majorana Nanowire Array Specifications
Braiding Protocol Implementation
module topological_braid(
input wire [2:0] gate_voltages,
output wire [1:0] anyon_positions
);
// Adiabatic braiding sequence
parameter T_braid = 100ns; // Much less than T2*
parameter V_min = -2.0;
parameter V_max = 2.0;
// Voltage sequences for exchanging anyons
reg [11:0] braid_sequence [0:7];
always @(posedge clock) begin
// Apply Fibonacci representation matrices
// F_matrix for fusion, R_matrix for braiding
F_matrix = {{phi^-1, phi^-0.5}, {phi^-0.5, -phi^-1}};
R_matrix = diag(e^{i*pi/5}, e^{-i*pi/5});
// Braiding unitary: ρ(σ_i) = R ⊕ F·R·F⁻¹
// Topologically protected against local perturbations
end
endmodule
Surface Code with Twist Defects
We implement the Z₂ × Z₂ quantum double model with twist defects for logical qubit encoding, achieving error rates below the fault-tolerance threshold.
| Parameter | Value | Description |
|---|---|---|
| Lattice Type | Raussendorf 3D | Measurement-based computation substrate |
| Code Distance | d = 17 | Corrects up to 8 arbitrary errors |
| Physical/Logical | 612 qubits | 2d² + 2d physical qubits per logical |
| Error Threshold | 0.67% | vs. 0.75% theoretical maximum |
| Logical Error Rate | 10⁻¹⁵ | With physical error rate 10⁻³ |
struct TopologicalMemory {
lattice: RaussendorfLattice,
stabilizers: Vec,
decoder: UnionFindDecoder,
magic_state_factory: DistillationFactory,
}
impl TopologicalMemory {
fn correct_errors(&mut self) -> Result<(), TopologicalError> {
// Measure stabilizers in 8μs cycle
let syndromes = self.measure_syndromes_parallel();
// MWPM decoder with O(n log n) complexity
let correction = self.decoder.decode(
syndromes,
PhenomenologicalModel::new(
p_measurement: 1e-3,
p_qubit: 1e-3,
)
);
// Apply corrections via lattice surgery
self.apply_topological_correction(correction)?;
// Magic state distillation for T-gates (15-to-1 protocol)
let magic_state = self.magic_state_factory.distill(
input_fidelity: 0.99,
target_fidelity: 0.9999,
protocol: BravyiHaah15To1,
);
Ok(())
}
}
Post-Quantum Cryptography
All cryptographic primitives are quantum-resistant, protecting against both current and future quantum adversaries. We implement NIST PQC standards alongside experimental quantum signature schemes.
CRYSTALS-Kyber
ML-KEM for key encapsulation. Security level 5 (AES-256 equivalent). 1568-byte ciphertext, 1632-byte public key.
CRYSTALS-Dilithium
ML-DSA for digital signatures. 4627-byte signature size. Deterministic signing prevents side-channel leakage.
SPHINCS+
Hash-based signatures with minimal assumptions. Stateless design. 49,856-byte signatures with 256-bit security.
BLISS Signatures
Bimodal Lattice Signature Scheme for high-performance applications. 5KB signatures, 7KB public keys.
AES-256-GCM
Symmetric encryption with authenticated encryption. Quantum-safe with Grover's bound (128-bit post-quantum).
SHA3-512
Keccak-based hashing. 256-bit post-quantum security. Used for all integrity verification.
Quantum Key Distribution
We implement device-independent QKD using the Ekert 91 protocol with CHSH inequality verification for unconditional security.
class DeviceIndependentQKD:
def __init__(self, photon_source, detectors):
self.source = photon_source # Entangled photon pair source
self.detectors = detectors # Single-photon avalanche diodes
self.chsh_threshold = 2.82 # 2√2 - ε for security
def generate_key(self, length: int) -> bytes:
key_bits = []
violation_history = []
for i in range(length * 10): # Oversample for sifting
# Generate maximally entangled Bell pair |Φ+⟩
photon_pair = self.source.generate_entangled()
# Random basis selection (24 settings for loophole-free)
basis_A = random.choice(range(24))
basis_B = random.choice(range(24))
# Spacelike-separated measurements
outcome_A = self.detectors.alice.measure(basis_A)
outcome_B = self.detectors.bob.measure(basis_B)
# CHSH value calculation for Bell test bases
if self.is_bell_test_basis(basis_A, basis_B):
S = self.calculate_chsh(outcome_A, outcome_B)
violation_history.append(S)
# Abort if Bell violation insufficient (eavesdropping)
if len(violation_history) > 100:
if np.mean(violation_history[-100:]) < self.chsh_threshold:
raise SecurityBreach("CHSH violation below threshold - eavesdropping detected")
# Sifting: keep matching bases for key
if basis_A == basis_B and outcome_A == outcome_B:
key_bits.append(outcome_A)
# Privacy amplification via 2-universal hashing
# Final key rate: r = 1 - h(Q) - leak_EC
return self.privacy_amplification(key_bits, length)
Quantum Repeater Network
Quantum-Secure Blockchain
Policy management and audit trails are stored on a quantum-resistant blockchain using lattice-based signatures and quantum Byzantine agreement.
QUANTUM BLOCK STRUCTURE
Block Header
Previous Hash: 512-bit SHA3-512
Merkle Root: Quantum Merkle tree
Nonce: Quantum annealing optimization
Timestamp: Quantum clock certified
Signatures: BLISS lattice-based
Transactions
Policy: Issuance/Updates
Claims: Submission/Verification
Payments: Premium Processing
Signing: CRYSTALS-Dilithium
Consensus Mechanism
Protocol: Proof-of-Stake + Quantum Byzantine Agreement
Message Complexity: O(n²) with O(1) rounds
Hardware Security Module
Cryptographic operations execute within FIPS 140-3 Level 3 certified hardware security modules integrated with our cryogenic quantum systems.
| Component | Specification | Security Function |
|---|---|---|
| Base Temperature | 10mK ± 0.1mK | Maintains quantum coherence |
| Cooling Power | 400μW @ 100mK | Thermal isolation from environment |
| DC Bias | 16-channel, ±10V, 16-bit | Gate control for qubit manipulation |
| RF Lines | 24-channel, 0-18GHz | Microwave control and readout |
| HEMT Amplifiers | 8×, noise temp 2K | Low-noise quantum measurement |
| Magnetic Shielding | μ-metal + superconducting | Isolates from external fields |
Readout Fidelity Metrics
HSM Integration
Hardware Attestation Protocol
struct HardwareAttestation {
tpm: TrustedPlatformModule,
endorsement_key: EK,
attestation_key: AK,
pcr_values: [u8; 24],
}
impl HardwareAttestation {
async fn remote_attestation(&self, verifier: &Verifier) -> Result {
// Step 1: Generate fresh nonce from verifier
let nonce = verifier.get_challenge().await?;
// Step 2: Collect platform measurements
let quote = self.tpm.quote(
pcr_selection: [0, 1, 2, 7, 14], // Boot chain + kernel
nonce: nonce,
signing_key: &self.attestation_key,
)?;
// Step 3: Include quantum-specific measurements
let quantum_state = QuantumMeasurement {
coherence_times: self.measure_t1_t2(),
error_rates: self.run_rb_sequence(),
calibration_hash: self.calibration_data.hash(),
};
// Step 4: Sign with HSM-protected key
let signature = self.hsm.sign_dilithium(
&[quote.as_bytes(), quantum_state.as_bytes()].concat()
)?;
// Step 5: Send to verifier
verifier.verify_attestation(AttestationReport {
quote,
quantum_state,
signature,
certificate_chain: self.get_cert_chain(),
}).await
}
}
Compliance & Certifications
FIPS 140-3 Level 3
Cryptographic module validation. Physical tamper-evidence and response. Identity-based authentication.
SOC 2 Type II
Continuous compliance monitoring. Automated evidence collection. Real-time control attestation.
ISO 27001
Information security management system. Risk assessment framework. Continuous improvement.
PCI DSS
Payment card industry compliance. Network segmentation. Encryption of cardholder data.
GDPR
Data protection by design. Right to erasure support. Cross-border transfer compliance.
NAIC Model Laws
Insurance-specific cybersecurity. Incident response requirements. Third-party oversight.
Immutable Audit Trail
class QuantumAuditTrail:
"""
Tendermint-based immutable audit log with quantum signatures.
"""
def __init__(self, validators: List[ValidatorNode]):
self.chain = TendermintChain(validators)
self.merkle_tree = QuantumMerkleTree()
async def log_event(self, event: AuditEvent) -> AuditReceipt:
# Sign event with post-quantum signature
signature = self.hsm.sign_dilithium(event.serialize())
# Add to quantum Merkle tree
leaf_hash = sha3_512(event.serialize() + signature)
merkle_proof = self.merkle_tree.insert(leaf_hash)
# Submit to Tendermint consensus
tx = Transaction(
event=event,
signature=signature,
merkle_proof=merkle_proof,
timestamp=self.quantum_clock.now(),
)
# Wait for 2/3+ validator signatures (BFT consensus)
receipt = await self.chain.submit_and_wait(tx)
return AuditReceipt(
block_height=receipt.height,
tx_hash=receipt.hash,
merkle_root=self.merkle_tree.root,
validator_signatures=receipt.signatures,
)
def verify_event(self, receipt: AuditReceipt) -> bool:
# Verify inclusion in blockchain
block = self.chain.get_block(receipt.block_height)
# Verify Merkle proof
return self.merkle_tree.verify_proof(
leaf=receipt.tx_hash,
proof=receipt.merkle_proof,
root=block.merkle_root
)
Risk Mitigation Strategy
Technical Risks
Mitigation: Dynamical decoupling sequences, topological protection
Fallback: Shorter-depth variational algorithms
Mitigation: Improved fabrication, surface code optimization
Fallback: Classical error mitigation (PEC, ZNE)
Mitigation: Modular architecture, chiplet interconnects
Fallback: Hybrid quantum-classical decomposition
Mitigation: Post-quantum cryptography deployed now
Status: All data quantum-safe since day one
Security Scaling Timeline
• Implement surface code with distance d=5
• Achieve 2 logical qubits with error rate <10⁻⁶
• Deploy CRYSTALS-Kyber/Dilithium across all endpoints
• Implement concatenated code (d=17)
• Achieve 16 logical qubits with 10⁻¹² error rate
• Deploy quantum repeater network (500km range)
• 1000 logical qubits at 10⁻¹⁵ error rate
• Device-independent QKD across all facilities
• Regulatory approval for quantum-secured reserves
Security Resources
- Threat model documentation and attack surface analysis
- Post-quantum cryptography migration guide
- Quantum key distribution protocol specifications
- Hardware security module integration manual
- Compliance automation playbooks (SOC2, PCI-DSS, SOX)
- Incident response procedures for quantum systems
Schedule Security Architecture Review
Engage with our quantum security team for a comprehensive review of your threat model and migration strategy to quantum-resistant infrastructure.
Request Security Audit →