System Architecture Overview

The Zi Stack is a federated system architecture designed to decompose operational bottlenecks through four interconnected technical modules. Each module operates independently while maintaining seamless integration through our GraphQL Federation layer.

ZI STACK ARCHITECTURE

MODULE A: Cöhr Console

Domain: zi-us.com

Function: Unified Control Plane

Integration: GraphQL Federation

MODULE B: Quantum Factory

Domain: zi-us.space

Function: Quantum Algorithm Execution

Integration: Hybrid Scheduler

MODULE C: Data Fabric

Domain: zi-us.cloud

Function: Multi-Tier Data Processing

Integration: Edge + Hybrid Cloud

MODULE D: Hardware Layer

Domain: zi-us.store

Function: On-Prem Infrastructure

Integration: QPU Co-processor

Integration Layer

GraphQL Federation Gateway: Unified API • Event Streaming

Enterprise Systems: SAP ERP • Salesforce • ServiceNow

4
Core Modules
<50ms
API Latency (p95)
99.99%
Uptime SLA
127
Qubit Capacity

Core Design Principles

Composable Infrastructure

Operations treated as microservices. Each new capability deploys without re-engineering data pipelines.

Quantum-Ready by Default

All data structures support quantum encoding. Hybrid classical-quantum execution paths built-in.

Zero-Trust Security

SPIFFE/SPIRE identity. Quantum Key Distribution. Intel SGX enclaves for confidential computing.

Immutable Audit Trail

Tendermint consensus for compliance records. Event sourcing via Kafka for complete state reconstruction.

Elastic Scaling

Kubernetes operators auto-scale expertise pods. GPU/QPU resources allocated on-demand.

API-First Design

GraphQL Federation gateway. OpenAPI 3.0 specs. gRPC for internal service mesh.

Module A: Cöhr Console

The unified control plane for all Zi Stack operations. Provides single-pane-of-glass visibility across expertise pods, compliance status, and system health.

zi-us.com
Cöhr Console — Unified Control Plane
GraphQL Federation • Kubernetes Native • Event-Driven

Technical Specifications

ComponentTechnologyPurpose
API GatewayApollo Federation 2.0Unified GraphQL schema across all subgraphs
Service MeshgRPC + IstioInternal microservice communication with mTLS
Event BusApache Kafka 3.xEvent sourcing for audit trail and state changes
OrchestrationKubernetes 1.28+Custom operators for expertise pod lifecycle
State StoreCockroachDBDistributed SQL with serializable isolation
Cache LayerRedis ClusterSession state and query result caching

GraphQL Federation Schema

extend schema @link(url: "https://specs.apollo.dev/federation/v2.0")

type Query {
  expertisePod(id: ID!): ExpertisePod
  expertisePods(filter: PodFilterInput): [ExpertisePod!]!
  complianceStatus(framework: ComplianceFramework!): ComplianceReport
  auditEvents(since: DateTime!, limit: Int = 100): [AuditEvent!]!
  systemHealth: HealthStatus!
  quantumJobQueue: [QuantumJob!]!
}

type ExpertisePod @key(fields: "id") {
  id: ID!
  name: String!
  resourceProfile: ResourceProfile!
  status: PodStatus!
  availability: AvailabilitySchedule!
  integrations: [Integration!]!
  metrics: PodMetrics!
  quantumJobs: [QuantumJob!]! @requires(fields: "id")
}

type Integration {
  target: String!
  connector: ConnectorType!
  status: IntegrationStatus!
  lastSync: DateTime
  errorRate: Float
}

enum ComplianceFramework {
  SOC2_TYPE_II
  PCI_DSS
  SOX
  GDPR
  HIPAA
}

Expertise Pod Configuration

apiVersion: zi.us/v2
kind: ExpertisePod
metadata:
  name: zi-us-soc2-compliance-auditor
  namespace: zi-us-production
  labels:
    app.kubernetes.io/name: compliance-auditor
    zi.us/domain: compliance
spec:
  resourceProfile:
    type: senior-auditor-llm-enhanced
    compute:
      cpu: "4"
      memory: "16Gi"
      gpu: "nvidia-a100"
    scaling:
      minReplicas: 2
      maxReplicas: 10
      targetCPUUtilization: 70
      
  availability:
    schedule: "3d/wk"
    timezone: "America/New_York"
    
  integrations:
    - name: zi-us-sap-erp
      target: ZI_US_SAP_ERP
      connector: odbc-gateway-encrypted
      config:
        host: sap.zi-us.internal
        connectionPool: 20
      credentials:
        secretRef: zi-us-sap-credentials
        
    - name: zi-us-salesforce
      target: ZI_US_SALESFORCE
      connector: oauth2-proxy
      config:
        instanceUrl: https://zi-us.my.salesforce.com
        apiVersion: "58.0"
        
  complianceRules:
    - name: pci-dss-automated-checks
      schedule: "0 */4 * * *"
      controls: [PCI-DSS-1.1, PCI-DSS-3.4, PCI-DSS-8.2]
      
    - name: sox-control-testing
      trigger: monthly-close
      
  llmConfig:
    model: claude-3-opus
    capabilities: [anomaly-detection, evidence-summarization]
    temperature: 0.1
Technical Benefit

Reduces audit cycle time from 3 weeks to 4 days through automated evidence collection and AI-powered anomaly detection.

Module B: Quantum Algorithm Factory

Research and execution environment for quantum-enhanced algorithms with problem decomposition, hybrid scheduling, and algorithm versioning.

zi-us.space
Quantum Algorithm Factory
Hybrid Execution • Algorithm Versioning • Multi-Backend
┌─────────────────────────────────────────────────────────────────────────────┐ │ QUANTUM ALGORITHM FACTORY PIPELINE │ ├─────────────────────────────────────────────────────────────────────────────┤ │ 1. PROBLEM DECOMPOSITION LAYER │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │ │ Business │─►│ Hamiltonian │─►│ Qubit │─►│ Circuit │ │ │ │ Problem │ │ Formulation │ │ Mapping │ │ Template │ │ │ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ │ │ │ │ 2. HYBRID QUANTUM-CLASSICAL SCHEDULER │ │ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │ │ │ IBM Qiskit │ │ Rigetti/Pennylane │ │ CUDA Kernels │ │ │ │ Combinatorial │ │ Monte Carlo │ │ Preprocessing │ │ │ │ Optimization │ │ Simulations │ │ Postprocessing │ │ │ └──────────────────┘ └──────────────────┘ └──────────────────┘ │ │ │ │ 3. ALGORITHM VERSIONING SYSTEM │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │ │ Circuit Git │─►│ Regression │─►│ Performance │─►│ Model │ │ │ │ Repo │ │ Testing │ │ Profiling │ │ Registry │ │ │ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ │ └─────────────────────────────────────────────────────────────────────────────┘

Backend Capabilities

BackendQubitsQVStrengths
ibm_fez15664Combinatorial optimization, QAOA, VQE
rigetti_aspen_m38032Monte Carlo, sampling, VQS
ionq_aria25128High fidelity, small circuits, chemistry
nvidia_cuquantum40 (sim)Preprocessing, circuit compilation

Quantum Fraud Detection Algorithm

class QuantumFraudDetector:
    def __init__(self, n_features: int = 50):
        self.backend = zi.space.get_optimal_backend(
            problem_type='classification',
            qubits_required=self._calculate_qubits(),
            error_tolerance=1e-3
        )
        self.feature_map = self._build_feature_map()
        self.ansatz = self._build_ansatz()
        
    def _build_feature_map(self) -> FeatureMap:
        return QAOAFeatureMap(
            entanglement='full',
            reps=3,
            parameter_shift=True
        )
    
    async def predict(self, data: pd.DataFrame, shots: int = 10000):
        features = self.preprocess(data)
        circuits = [self.build_circuit(f) for f in features]
        
        result = await self.backend.run(
            circuits=circuits,
            shots=shots,
            optimization_level=3,
            resilience_level=2  # Error mitigation
        )
        
        probabilities = self._extract_probabilities(result)
        return self.neural_network(probabilities)
15-20%
Fraud Detection Improvement
Real-time
Premium Adjustment
127
Qubits Utilized
<0.001
Logical Error Rate

Module C: Quantum-Hybrid Data Fabric

Multi-tier data processing spanning edge, hybrid cloud, and specialized compute partitions.

zi-us.cloud
Quantum-Hybrid Data Fabric
Edge Processing • Hybrid Cloud • Quantum-Safe
PHASE 1: EDGE PROCESSING ┌─────────────────────────────────────────────────────────────────┐ │ Zi-US On-Prem (zi-us.store hardware) │ │ • Quantum-Safe Encryption • FPGA Accelerators • Local ML │ └──────────────────────────────┬──────────────────────────────────┘ │ TLS 1.3 + QKD ▼ PHASE 2: HYBRID PROCESSING ┌─────────────────────────────────────────────────────────────────┐ │ zi-us.cloud: us-east-quantum │ │ • 1000+ vCPU K8s • IBM Q + Rigetti • Ceph 3-way Replica │ └──────────────────────────────┬──────────────────────────────────┘ │ GraphQL Federation ▼ PHASE 3: SPECIALIZED PROCESSING ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ Risk Modeling │ │ Customer 360° │ │ Compliance │ │ GPU-Optimized │ │ Graph Database │ │ Immutable Ledger│ └─────────────────┘ └─────────────────┘ └─────────────────┘

Data Transformation Pipeline

CREATE MATERIALIZED VIEW zi_us_policies_quantum_ready
WITH (engine = 'zi_quantum_hybrid', replication_factor = 3) AS
SELECT 
    policy_id,
    premium,
    coverage,
    -- Quantum-encoded risk vector
    quantum_encode(
        ARRAY[age_factor, location_risk, claim_history_score],
        encoding_type => 'amplitude_embedding'
    ) AS q_risk_vector,
    -- Temporal graph via quantum walk
    TRAVERSE claim_history USING quantum_walk(
        max_depth => 5,
        walk_type => 'continuous_time'
    ) AS claim_graph_embedding
FROM zi_us_legacy.policies
WHERE migrate_status = 'pending'
OPTIMIZE USING quantum_annealing(timeout => '24h');

Module D: Hardware Abstraction Layer

On-premises quantum-classical hybrid infrastructure with FIPS 140-3 compliance.

zi-us.store
Hardware Abstraction Layer
On-Prem Deployment • QPU Co-processor • FIPS 140-3

Standard Node (SIN-3000) Specifications

ComponentSpecificationPurpose
CPU2x Intel Xeon Max 948056 cores each, 350W TDP
GPU4x NVIDIA H100 SXM580GB HBM3, NVLink 4.0
QPU1x IonQ Aria Co-processor25 qubits, QV 128
Memory2TB DDR5-5600 ECC8-channel per socket
Network400GbE Quantum NICRoCEv2 RDMA
HSMThales Luna 7 PCIeFIPS 140-3 Level 3

Installation Protocol

1
Quantum-Safe Network Tunnel

TLS 1.3 with CRYSTALS-Kyber post-quantum key exchange. QKD link for inter-DC communication.

2
Hardware Attestation via TPM 2.0

Verify firmware integrity. Validate PCR values. Generate hardware-bound encryption keys.

3
Air-Gapped Key Ceremony

HSM key generation with Shamir's Secret Sharing (3-of-5). Distributed custody model.

4
Continuous Telemetry

Real-time health monitoring streamed to zi-us.cloud observability stack.

Security & Compliance Architecture

Security
Zero-Trust Security Model
SPIFFE/SPIRE • QKD • Intel SGX • Tendermint
SPIFFE/SPIRE

Workload identity with automatic SVID rotation across hybrid cloud.

Quantum Key Distribution

BB84 protocol for inter-DC. Information-theoretic security.

Intel SGX Enclaves

Confidential computing with memory encryption and remote attestation.

Tendermint Consensus

BFT audit trail with cryptographic proofs.

Automated Compliance Engine

class AutomatedSOC2Compliance:
    CONTROL_MAPPINGS = {
        'CC6.1': {'name': 'Logical Access', 'checks': ['verify_rbac', 'audit_privileged_access']},
        'CC7.1': {'name': 'System Operations', 'checks': ['verify_encryption', 'check_backups']},
        'CC8.1': {'name': 'Change Management', 'checks': ['audit_key_rotation', 'verify_approvals']}
    }
    
    async def continuous_monitoring(self) -> ComplianceReport:
        results = {}
        for control_id, spec in self.CONTROL_MAPPINGS.items():
            check_results = await asyncio.gather(*[
                self._execute_check(check) for check in spec['checks']
            ])
            results[control_id] = self._aggregate_results(check_results)
            
        evidence_hash = await self.evidence_collector.store(results)
        blockchain_tx = await self.zi_blockchain.submit_evidence(evidence_hash)
        
        return ComplianceReport(
            framework='SOC2 Type II',
            status=self._overall_status(results),
            evidence_hash=evidence_hash,
            auditor_access='real-time via Cöhr Console'
        )

API Reference

POST/v2/quantum/jobs

Submit a quantum computation job to the hybrid scheduler.

ParameterTypeDescription
circuit *stringOpenQASM 3.0 circuit
backendstringTarget backend (auto if omitted)
shotsintegerMeasurement shots (default: 1000)
GET/v2/expertise-pods/{id}/status

Retrieve real-time status and metrics for an Expertise Pod.

STREAM/v2/compliance/events

Subscribe to real-time compliance events via Server-Sent Events.

Technical Resources

  • Full API documentation (OpenAPI 3.0)
  • Threat model documentation and security white papers
  • Reference implementations for enterprise workflows
  • Performance benchmark reports
  • Quantum algorithm research papers

Ready for Technical Deep-Dive?

Schedule a 4-hour architecture review workshop with our engineering team to map integration points and design your custom implementation roadmap.


Schedule Architecture Review →