System Architecture Overview
The Zi Stack is a federated system architecture designed to decompose operational bottlenecks through four interconnected technical modules. Each module operates independently while maintaining seamless integration through our GraphQL Federation layer.
ZI STACK ARCHITECTURE
MODULE A: Cöhr Console
Domain: zi-us.com
Function: Unified Control Plane
Integration: GraphQL Federation
MODULE B: Quantum Factory
Domain: zi-us.space
Function: Quantum Algorithm Execution
Integration: Hybrid Scheduler
MODULE C: Data Fabric
Domain: zi-us.cloud
Function: Multi-Tier Data Processing
Integration: Edge + Hybrid Cloud
MODULE D: Hardware Layer
Domain: zi-us.store
Function: On-Prem Infrastructure
Integration: QPU Co-processor
Integration Layer
GraphQL Federation Gateway: Unified API • Event Streaming
Enterprise Systems: SAP ERP • Salesforce • ServiceNow
Core Design Principles
Composable Infrastructure
Operations treated as microservices. Each new capability deploys without re-engineering data pipelines.
Quantum-Ready by Default
All data structures support quantum encoding. Hybrid classical-quantum execution paths built-in.
Zero-Trust Security
SPIFFE/SPIRE identity. Quantum Key Distribution. Intel SGX enclaves for confidential computing.
Immutable Audit Trail
Tendermint consensus for compliance records. Event sourcing via Kafka for complete state reconstruction.
Elastic Scaling
Kubernetes operators auto-scale expertise pods. GPU/QPU resources allocated on-demand.
API-First Design
GraphQL Federation gateway. OpenAPI 3.0 specs. gRPC for internal service mesh.
Module A: Cöhr Console
The unified control plane for all Zi Stack operations. Provides single-pane-of-glass visibility across expertise pods, compliance status, and system health.
Technical Specifications
| Component | Technology | Purpose |
|---|---|---|
| API Gateway | Apollo Federation 2.0 | Unified GraphQL schema across all subgraphs |
| Service Mesh | gRPC + Istio | Internal microservice communication with mTLS |
| Event Bus | Apache Kafka 3.x | Event sourcing for audit trail and state changes |
| Orchestration | Kubernetes 1.28+ | Custom operators for expertise pod lifecycle |
| State Store | CockroachDB | Distributed SQL with serializable isolation |
| Cache Layer | Redis Cluster | Session state and query result caching |
GraphQL Federation Schema
extend schema @link(url: "https://specs.apollo.dev/federation/v2.0")
type Query {
expertisePod(id: ID!): ExpertisePod
expertisePods(filter: PodFilterInput): [ExpertisePod!]!
complianceStatus(framework: ComplianceFramework!): ComplianceReport
auditEvents(since: DateTime!, limit: Int = 100): [AuditEvent!]!
systemHealth: HealthStatus!
quantumJobQueue: [QuantumJob!]!
}
type ExpertisePod @key(fields: "id") {
id: ID!
name: String!
resourceProfile: ResourceProfile!
status: PodStatus!
availability: AvailabilitySchedule!
integrations: [Integration!]!
metrics: PodMetrics!
quantumJobs: [QuantumJob!]! @requires(fields: "id")
}
type Integration {
target: String!
connector: ConnectorType!
status: IntegrationStatus!
lastSync: DateTime
errorRate: Float
}
enum ComplianceFramework {
SOC2_TYPE_II
PCI_DSS
SOX
GDPR
HIPAA
}
Expertise Pod Configuration
apiVersion: zi.us/v2
kind: ExpertisePod
metadata:
name: zi-us-soc2-compliance-auditor
namespace: zi-us-production
labels:
app.kubernetes.io/name: compliance-auditor
zi.us/domain: compliance
spec:
resourceProfile:
type: senior-auditor-llm-enhanced
compute:
cpu: "4"
memory: "16Gi"
gpu: "nvidia-a100"
scaling:
minReplicas: 2
maxReplicas: 10
targetCPUUtilization: 70
availability:
schedule: "3d/wk"
timezone: "America/New_York"
integrations:
- name: zi-us-sap-erp
target: ZI_US_SAP_ERP
connector: odbc-gateway-encrypted
config:
host: sap.zi-us.internal
connectionPool: 20
credentials:
secretRef: zi-us-sap-credentials
- name: zi-us-salesforce
target: ZI_US_SALESFORCE
connector: oauth2-proxy
config:
instanceUrl: https://zi-us.my.salesforce.com
apiVersion: "58.0"
complianceRules:
- name: pci-dss-automated-checks
schedule: "0 */4 * * *"
controls: [PCI-DSS-1.1, PCI-DSS-3.4, PCI-DSS-8.2]
- name: sox-control-testing
trigger: monthly-close
llmConfig:
model: claude-3-opus
capabilities: [anomaly-detection, evidence-summarization]
temperature: 0.1
Technical Benefit
Reduces audit cycle time from 3 weeks to 4 days through automated evidence collection and AI-powered anomaly detection.
Module B: Quantum Algorithm Factory
Research and execution environment for quantum-enhanced algorithms with problem decomposition, hybrid scheduling, and algorithm versioning.
Backend Capabilities
| Backend | Qubits | QV | Strengths |
|---|---|---|---|
| ibm_fez | 156 | 64 | Combinatorial optimization, QAOA, VQE |
| rigetti_aspen_m3 | 80 | 32 | Monte Carlo, sampling, VQS |
| ionq_aria | 25 | 128 | High fidelity, small circuits, chemistry |
| nvidia_cuquantum | 40 (sim) | — | Preprocessing, circuit compilation |
Quantum Fraud Detection Algorithm
class QuantumFraudDetector:
def __init__(self, n_features: int = 50):
self.backend = zi.space.get_optimal_backend(
problem_type='classification',
qubits_required=self._calculate_qubits(),
error_tolerance=1e-3
)
self.feature_map = self._build_feature_map()
self.ansatz = self._build_ansatz()
def _build_feature_map(self) -> FeatureMap:
return QAOAFeatureMap(
entanglement='full',
reps=3,
parameter_shift=True
)
async def predict(self, data: pd.DataFrame, shots: int = 10000):
features = self.preprocess(data)
circuits = [self.build_circuit(f) for f in features]
result = await self.backend.run(
circuits=circuits,
shots=shots,
optimization_level=3,
resilience_level=2 # Error mitigation
)
probabilities = self._extract_probabilities(result)
return self.neural_network(probabilities)
Module C: Quantum-Hybrid Data Fabric
Multi-tier data processing spanning edge, hybrid cloud, and specialized compute partitions.
Data Transformation Pipeline
CREATE MATERIALIZED VIEW zi_us_policies_quantum_ready
WITH (engine = 'zi_quantum_hybrid', replication_factor = 3) AS
SELECT
policy_id,
premium,
coverage,
-- Quantum-encoded risk vector
quantum_encode(
ARRAY[age_factor, location_risk, claim_history_score],
encoding_type => 'amplitude_embedding'
) AS q_risk_vector,
-- Temporal graph via quantum walk
TRAVERSE claim_history USING quantum_walk(
max_depth => 5,
walk_type => 'continuous_time'
) AS claim_graph_embedding
FROM zi_us_legacy.policies
WHERE migrate_status = 'pending'
OPTIMIZE USING quantum_annealing(timeout => '24h');
Module D: Hardware Abstraction Layer
On-premises quantum-classical hybrid infrastructure with FIPS 140-3 compliance.
Standard Node (SIN-3000) Specifications
| Component | Specification | Purpose |
|---|---|---|
| CPU | 2x Intel Xeon Max 9480 | 56 cores each, 350W TDP |
| GPU | 4x NVIDIA H100 SXM5 | 80GB HBM3, NVLink 4.0 |
| QPU | 1x IonQ Aria Co-processor | 25 qubits, QV 128 |
| Memory | 2TB DDR5-5600 ECC | 8-channel per socket |
| Network | 400GbE Quantum NIC | RoCEv2 RDMA |
| HSM | Thales Luna 7 PCIe | FIPS 140-3 Level 3 |
Installation Protocol
Quantum-Safe Network Tunnel
TLS 1.3 with CRYSTALS-Kyber post-quantum key exchange. QKD link for inter-DC communication.
Hardware Attestation via TPM 2.0
Verify firmware integrity. Validate PCR values. Generate hardware-bound encryption keys.
Air-Gapped Key Ceremony
HSM key generation with Shamir's Secret Sharing (3-of-5). Distributed custody model.
Continuous Telemetry
Real-time health monitoring streamed to zi-us.cloud observability stack.
Security & Compliance Architecture
SPIFFE/SPIRE
Workload identity with automatic SVID rotation across hybrid cloud.
Quantum Key Distribution
BB84 protocol for inter-DC. Information-theoretic security.
Intel SGX Enclaves
Confidential computing with memory encryption and remote attestation.
Tendermint Consensus
BFT audit trail with cryptographic proofs.
Automated Compliance Engine
class AutomatedSOC2Compliance:
CONTROL_MAPPINGS = {
'CC6.1': {'name': 'Logical Access', 'checks': ['verify_rbac', 'audit_privileged_access']},
'CC7.1': {'name': 'System Operations', 'checks': ['verify_encryption', 'check_backups']},
'CC8.1': {'name': 'Change Management', 'checks': ['audit_key_rotation', 'verify_approvals']}
}
async def continuous_monitoring(self) -> ComplianceReport:
results = {}
for control_id, spec in self.CONTROL_MAPPINGS.items():
check_results = await asyncio.gather(*[
self._execute_check(check) for check in spec['checks']
])
results[control_id] = self._aggregate_results(check_results)
evidence_hash = await self.evidence_collector.store(results)
blockchain_tx = await self.zi_blockchain.submit_evidence(evidence_hash)
return ComplianceReport(
framework='SOC2 Type II',
status=self._overall_status(results),
evidence_hash=evidence_hash,
auditor_access='real-time via Cöhr Console'
)
API Reference
Submit a quantum computation job to the hybrid scheduler.
| Parameter | Type | Description |
|---|---|---|
| circuit * | string | OpenQASM 3.0 circuit |
| backend | string | Target backend (auto if omitted) |
| shots | integer | Measurement shots (default: 1000) |
Retrieve real-time status and metrics for an Expertise Pod.
Subscribe to real-time compliance events via Server-Sent Events.
Technical Resources
- Full API documentation (OpenAPI 3.0)
- Threat model documentation and security white papers
- Reference implementations for enterprise workflows
- Performance benchmark reports
- Quantum algorithm research papers
Ready for Technical Deep-Dive?
Schedule a 4-hour architecture review workshop with our engineering team to map integration points and design your custom implementation roadmap.
Schedule Architecture Review →