Core Architectural Philosophy

We propose replacing Zi-US's fragmented service-oriented architecture with a quantum-first data fabric where all risk computations are inherently parallelizable across classical and quantum processing units. This represents a fundamental computational paradigm migration.

CURRENT STATE TARGET STATE ───────────────────────────────────────────────────────────────────────────── ┌─────────────────┐ ┌─────────────────────────────────┐ │ Siloed Products │ │ QUANTUM-FIRST DATA FABRIC │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ P1 │ │ P2 │ │ │ ┌─────────────────────────┐ │ │ └──┬──┘ └──┬──┘ │ ═══════> │ │ Unified Risk Model │ │ │ │ │ │ │ │ (Quantum Superposition)│ │ │ ┌──▼───────▼──┐ │ │ └───────────┬─────────────┘ │ │ │ Legacy ETL │ │ │ │ │ │ └──────┬──────┘ │ │ ┌───────────▼─────────────┐ │ │ │ │ │ │ Hybrid QPU/GPU Runtime │ │ │ ┌──────▼──────┐ │ │ └───────────┬─────────────┘ │ │ │ Batch DWH │ │ │ │ │ │ └─────────────┘ │ │ ┌───────────▼─────────────┐ │ └─────────────────┘ │ │ Real-time Analytics │ │ │ └─────────────────────────┘ │ Monthly Risk Updates └─────────────────────────────────┘ 3-4 Month Deploy Cycles $2.3M Integration Debt Sub-second Risk Updates Continuous Deployment Zero Integration Overhead

Quantum-Hybrid Execution Runtime

The execution runtime provides seamless abstraction over heterogeneous compute resources, automatically routing workloads to optimal backends based on circuit characteristics, latency requirements, and cost constraints.

Runtime Architecture

struct QuantumTaskScheduler {
    topology: QuantumTopology,
    backends: HashMap<BackendType, BackendCapabilities>,
    cost_model: ExecutionCostModel,
}

impl QuantumTaskScheduler {
    fn schedule_insurance_workflow(
        &self,
        workflow: &InsuranceWorkflow
    ) -> ScheduledExecution {
        
        // Quantum resource estimation
        let resource_estimate = self.estimate_resources(
            workflow.circuit_depth(),
            workflow.required_fidelity(),
            workflow.deadline(),
        );
        
        // Dynamic backend selection
        let backend = self.select_optimal_backend(
            resource_estimate,
            current_load: self.get_system_load(),
            cost_constraints: workflow.budget(),
        );
        
        // Compile with topology constraints
        let compiled_circuit = self.compile_with_constraints(
            workflow.circuit(),
            backend.topology(),
            self.error_rates(),
        );
        
        // Execute with real-time monitoring
        ScheduledExecution {
            backend,
            circuit: compiled_circuit,
            error_mitigation: self.select_mitigation_strategy(),
            monitoring: QuantumTelemetry::new(),
        }
    }
}

Runtime Optimization Features

Dynamic Circuit Cutting
Auto-partition circuits >50 qubits across QPU/GPU clusters
Error Mitigation
Zero-noise extrapolation + probabilistic error cancellation
Latency Hiding
Asynchronous execution with speculative pre-computation
Cost Optimization
C(N,P,ε) = α·P + β·(1/ε) + γ·log(N)

QIR Compilation Pipeline

Business logic compiles to Quantum Intermediate Representation (QIR), enabling hardware-agnostic algorithm development with automatic optimization for target backends.

COMPILATION FLOW ───────────────────────────────────────────────────────────────────────────── Zi-US Business Logic ──► Zi Translation Layer ──► QIR ──► Optimized Execution ┌─────────────────────┐ ┌──────────────────┐ ┌────────────────────────┐ │ Insurance Domain │ │ Quantum Compiler │ │ Hardware Backends │ │ │ │ │ │ │ │ • Premium Calc │───►│ • Circuit Synth │───►│ • IBM Quantum (127q) │ │ • Risk Assessment │ │ • Gate Decomp │ │ • Rigetti Aspen (80q) │ │ • Fraud Detection │ │ • Topology Map │ │ • IonQ Aria (25q) │ │ • Portfolio Opt │ │ • Error Compile │ │ • NVIDIA cuQuantum │ └─────────────────────┘ └──────────────────┘ └────────────────────────┘
; QIR: Travel Insurance Claim Risk Assessment
define quantum @zi_us_claim_risk_qir(%TravelerProfile* %profile, 
                                      %PolicyTerms* %terms) {
entry:
  ; Convert classical data to quantum state
  %risk_state = call @encode_to_qubits(%profile, %terms)
  
  ; Apply quantum feature map
  call @hardware_efficient_ansatz(%risk_state, 
                                  depth=8, 
                                  entanglement="full")
  
  ; Hybrid quantum-classical optimization loop
  %result = call @vqe_solver(
    hamiltonian=@generate_claim_hamiltonian(%terms),
    optimizer=@quantum_natural_gradient(),
    shots=8192
  )
  
  ; Measure and post-process
  %classical_result = call @shadow_tomography(%result, samples=1000)
  
  ret %classical_result
}

Phase 1: Foundation

PHASE 01
Quantum Readiness & Proof of Concept
MONTHS 1-6
  • Deploy Cöhr Console with GraphQL gateway in Zi-US AWS VPC
  • Establish bi-directional sync with JIRA/ServiceNow/existing tooling
  • Onboard 2 pilot teams from core operations
  • Install 2× SIN-3000 quantum-classical hybrid nodes at primary DC
  • Migrate 10TB of policy data to quantum-ready fabric
  • Design and fabricate 8×8 trijunction Majorana array
  • Implement surface code with distance d=5
  • Achieve 2 logical qubits with error rate <10⁻⁶
  • Execute first quantum premium calculation
2
Logical Qubits
10⁻⁶
Error Rate
$450K
Quarterly Savings

Quantum Readiness Assessment

WEEK 1-2
Computational Analysis
Analysis of Zi-US's most computationally intensive actuarial models. Identification of quantum-suitable algorithms in current pipeline. Mapping of data flows for quantum acceleration.
WEEK 3-8
Proof-of-Concept Sprint
Deploy quantum simulator environment in Zi-US's VPC. Implement one high-value algorithm (mortality risk modeling). Benchmark against current classical implementation with rigorous A/B testing.
WEEK 9-10
Architecture Deep Dive
Joint design session with Zi-US's quantum research team. Security review with CISO organization. Compliance mapping for quantum-specific regulations.

Week-by-Week Execution Grid

PHASE 1: WEEKS 1-10
1
2
3
4
5
6
7
8
9
10

Phase 2: Scaling

PHASE 02
Quantum Algorithm Deployment & Data Migration
MONTHS 7-18
  • Scale to 32×32 trijunction array (1024 physical qubits)
  • Implement concatenated surface-toric code (d=17)
  • Achieve 16 logical qubits with 10⁻¹² error rate
  • Establish zi-us.space research pod with University of Michigan
  • Train 3 custom quantum algorithms on Zi-US historical data
  • Implement real-time pricing engine for 10% of portfolio
  • Deploy quantum fraud detection across claim processing
  • Complete zero-downtime migration of policy databases
  • File 3+ patent applications for quantum insurance algorithms
16
Logical Qubits
12%
Loss Ratio Improvement
3
Patent Filings

Algorithm Deployment Pipeline

class QuantumRiskEngine:
    def __init__(self, portfolio):
        self.portfolio = portfolio
        self.quantum_walk = ContinuousTimeQuantumWalk()
        self.variational_solver = QuantumApproximateOptimizationAlgorithm()
        
    def calculate_value_at_risk(self, confidence_level=0.99):
        """
        Implement qVaR using amplitude estimation
        Complexity: O(1/ε) vs classical O(1/ε²)
        """
        # Encode portfolio distribution into quantum state
        portfolio_state = self.encode_portfolio_to_amplitude()
        
        # Apply quantum Monte Carlo operator
        grover_operator = self.construct_grover_oracle(confidence_level)
        
        # Estimate probability amplitude
        risk_estimate = self.amplitude_estimation(
            state_preparation=portfolio_state,
            grover_operator=grover_operator,
            precision=1e-4,
            shots=10000
        )
        
        # Post-process with classical Cornish-Fisher expansion
        return self.cornish_fisher_correction(risk_estimate)
    
    def real_time_stress_testing(self, scenarios):
        """
        Parallel evaluation of thousands of stress scenarios
        using quantum amplitude encoding
        """
        # Encode scenarios in superposition
        scenario_superposition = self.encode_scenarios(scenarios)
        
        # Apply stress transformation in parallel
        stressed_portfolio = self.apply_stress_transform(
            scenario_superposition,
            parallel=True
        )
        
        # Measure results using quantum counting
        return self.quantum_counting(stressed_portfolio)

Zero-Downtime Migration Protocol

-- Zero-downtime quantum migration transaction
BEGIN TRANSACTION QUANTUM;

-- Phase 1: Shadow processing (parallel quantum computation)
CREATE SHADOW TABLE policies_quantum AS
SELECT *, quantum_risk_score(policy_data) AS q_score
FROM legacy_policies
WHERE migrated = false;

-- Phase 2: Dual-write consistency
CREATE TRIGGER quantum_sync
AFTER UPDATE ON legacy_policies
FOR EACH ROW
EXECUTE PROCEDURE quantum_replicate(
    operation = 'UPDATE',
    new_data = NEW,
    consistency_level = 'quantum_causal'
);

-- Phase 3: Quantum-primary cutover
ALTER TABLE legacy_policies 
ADD CONSTRAINT quantum_consistency 
CHECK (migration_state IN ('classical', 'quantum', 'hybrid'));

-- Phase 4: Legacy deprecation
-- Classical systems become read-only backup
COMMIT TRANSACTION QUANTUM;

Phase 3: Production

PHASE 03
Full Production & Regulatory Approval
MONTHS 19-36
  • Deploy full-scale QPU with 1M physical qubits
  • Achieve 1000 logical qubits with error rate <10⁻¹⁵
  • Complete migration of all actuarial models to quantum runtime
  • Deploy 15+ Expertise Pods across compliance, actuarial, CX
  • Achieve quantum advantage for 100% of pricing computations
  • Device-independent QKD across all facilities
  • Obtain regulatory approval for quantum-based reserve calculations
  • Full quantum-classical hybrid workflow automation
  • Achieve $8.2M annual run-rate savings
1000
Logical Qubits
10⁻¹⁵
Error Rate
$8.2M
Annual Savings

Hardware Specifications at Scale

INSURANCE-SPECIFIC QUANTUM PROCESSING UNIT (IQPU) ───────────────────────────────────────────────────────────────────────────── ┌─────────────────────────────────────────────────────────────────────────────┐ │ LAYER 1: DATA INGESTION & CLASSICAL PREPROCESSING │ │ ─────────────────────────────────────────────────────────────────────────── │ │ • 4× 400GbE NICs with RDMA │ │ • FPGA-based feature encoding (8ns latency) │ │ • Real-time data validation against actuarial tables │ ├─────────────────────────────────────────────────────────────────────────────┤ │ LAYER 2: QUANTUM PROCESSING │ │ ─────────────────────────────────────────────────────────────────────────── │ │ • 64 superconducting qubits (T1 > 100μs) │ │ • All-to-all couplers via tunable bus architecture │ │ • On-chip error detection circuits │ │ • Surface code with twist defects (d=17) │ ├─────────────────────────────────────────────────────────────────────────────┤ │ LAYER 3: CLASSICAL POST-PROCESSING │ │ ─────────────────────────────────────────────────────────────────────────── │ │ • 4× NVIDIA H100 for ML inference │ │ • Custom actuarial math accelerators │ │ • Hardware security module (FIPS 140-3 Level 4) │ └─────────────────────────────────────────────────────────────────────────────┘

Resource Scaling Equations

Classical Complexity
T_classical = O(N log N)
Quantum Complexity
T_quantum = O(√N · log(1/ε))
Zi-US Scale (≈10M policies)
Classical: 14.5 hours full re-pricing → Quantum hybrid: 8.7 minutes (100× improvement)

Service Level Objectives

Performance guarantees with quantum acceleration factors across all insurance operations.

Operation
Target
99th %ile
Quantum Boost
Premium Calculation
10ms
25ms
100× faster
Fraud Detection
50ms
100ms
1000× pattern capacity
Portfolio Risk Assessment
100ms
250ms
50× scenario parallelism
Regulatory Reporting
1s
2s
Real-time continuous
Catastrophe Modeling
5s
10s
1000× parallel simulations

API Latency Guarantees

GraphQL Queries (95th)
< 50ms
Data Migration Rate
100TB/month zero loss
Audit Automation
85% controls automated
Cost Efficiency
60% audit OPEX reduction

Failure Modes & Error Handling

Comprehensive degradation protocols for quantum-specific failure scenarios with automatic mitigation strategies.

Error Type
Detection Method
Mitigation Strategy
Qubit Decoherence
T1/T2 real-time monitoring
Dynamical decoupling sequences
Gate Infidelity
Randomized benchmarking
Automatic gate recalibration
Readout Error
Confusion matrix analysis
Measurement error mitigation
Cosmic Ray Events
Parity check failures
Surface code correction
Software Bugs
Formal verification
Runtime assertion + rollback
Hardware Failure
Heartbeat monitoring
Quantum circuit cutting to backup

Disaster Recovery Protocol

def quantum_disaster_recovery():
    """
    Quantum state teleportation for business continuity
    Pre-distributed entangled pairs enable instant state transfer
    """
    # Entangled pairs pre-distributed across availability zones
    bell_pairs = distribute_entanglement(
        source_az='us-east-1',
        target_az='us-west-2',
        pairs=1000
    )
    
    def recover_quantum_state():
        # Measure source qubits in Bell basis
        measurement_results = measure_bell_basis(source_qubits)
        
        # Transmit 2 classical bits per qubit
        send_classical_bits(measurement_results)
        
        # Apply Pauli corrections based on measurement
        apply_pauli_corrections(target_qubits, measurement_results)
        
        # Verify state fidelity exceeds threshold
        fidelity = verify_state_transfer(source_state, target_state)
        
        return fidelity > 0.999  # Recovery successful
    
    return recover_quantum_state()

Technical Deliverables

Quantum Circuit Libraries

  • Insurance mathematics quantum primitives (VaR, stress testing, pricing)
  • Quantum graph neural networks for fraud detection
  • Amplitude estimation routines for Monte Carlo acceleration
  • Variational quantum eigensolver implementations for optimization

Integration Components

  • Full API documentation (OpenAPI 3.0 specification)
  • Performance benchmarking suite with classical baselines
  • Integration adapters for existing tech stack (SAP, Salesforce, ServiceNow)
  • Real-time A/B testing framework for quantum migration

Documentation

  • Threat model documentation for quantum systems
  • White paper: "Quantum Advantage Timeline for Insurance"
  • Complexity analysis with crossover point calculations
  • Regulatory compliance mapping for quantum-specific requirements

Request Technical Engagement

This architecture represents a fundamental rethinking of insurance computation. We are prepared to demonstrate mathematical proofs of quantum advantage for your specific use cases and provide detailed complexity analysis showing the crossover point where quantum systems outperform classical infrastructure.

Schedule Architecture Review →