Overview

The Quantum Finance Risk Model (QFRM) is a cutting-edge financial risk analysis tool that combines quantum computing simulations with traditional risk metrics to provide comprehensive portfolio risk assessment.

Key Features

  • Real-time market data from Yahoo Finance (19 assets across stocks, indices, commodities, crypto)
  • 20-qubit quantum circuit for risk state analysis using IBM Qiskit
  • Traditional metrics: VaR, CVaR, Sharpe Ratio, Maximum Drawdown, Volatility
  • 4-second dynamic 3D/2D quantum risk simulations
  • Cross-asset correlation matrices with entropy calculations
  • Comprehensive JSON, PNG, HTML, GIF, and TXT output formats

Latest Results

-2.68%
VaR (95%)
-4.29%
CVaR (95%)
29.35%
Volatility
1.15
Sharpe Ratio
0.146
Quantum Risk
331
Quantum States

Installation

Clone the repository and install dependencies to get started with QFRM.

Quick Install

# Clone the repository
git clone https://github.com/shellworlds/RMDNSTSW.git
cd RMDNSTSW

# Install dependencies
pip install -r requirements.txt

# Run the model
python qfrm.py

Requirements

Package Version Purpose
qiskit โ‰ฅ1.0.0 Quantum circuit simulation
qiskit-aer โ‰ฅ0.13.0 Aer quantum simulator backend
yfinance โ‰ฅ0.2.28 Yahoo Finance market data
numpy โ‰ฅ1.24.0 Numerical computations
matplotlib โ‰ฅ3.7.0 Static & dynamic visualizations
plotly โ‰ฅ5.14.0 Interactive HTML reports

Quick Start

RUN python qfrm.py [options]

Execute the quantum finance risk model with customizable parameters.

Command Line Options

Option Type Default Description
--qubits int 20 Number of qubits in quantum circuit
--shots int 5000 Number of quantum measurement shots
--output string ./finance_risk_output Output directory for reports

Example Commands

# Default execution (20 qubits, 5000 shots)
python qfrm.py

# Quick test with reduced parameters
python qfrm.py --qubits 10 --shots 1000

# High precision simulation
python qfrm.py --qubits 25 --shots 10000 --output ./high_precision
Expected Output
================================================================================
QUANTUM FINANCE RISK MODEL - EXECUTION COMPLETE
================================================================================
Generated Output Files:
  ๐Ÿ“Š Dashboard PNG: ./RMDNSTSW/finance_risk_output/finance_risk_dashboard_*.png
  ๐Ÿ“ˆ Interactive HTML: ./RMDNSTSW/finance_risk_output/finance_risk_report_*.html
  ๐Ÿ“‹ JSON Report: ./RMDNSTSW/finance_risk_output/finance_risk_report_*.json
  ๐Ÿ“ Text Summary: ./RMDNSTSW/finance_risk_output/risk_summary_*.txt
  ๐ŸŽฌ Simulation GIF: ./RMDNSTSW/finance_risk_output/quantum_risk_simulation_*.gif
  ๐ŸŽฌ Evolution GIF: ./RMDNSTSW/finance_risk_output/risk_evolution_*.gif
================================================================================

Dynamic Simulations

QFRM generates two 4-second GIF simulations showing quantum risk evolution in both 3D and 2D.

Quantum Risk Simulation

Quantum Risk Simulation

Click to view full simulation โ€ข 3D particles + 2D waves + Real-time timeline

Risk Evolution Simulation

Risk Evolution Simulation

Click to view full simulation โ€ข 3D helix + 2D polar profile

Simulation Specifications

Simulation Duration FPS Features
quantum_risk_simulation 4 seconds 30 50 particles, surface mesh, wave dynamics, timeline
risk_evolution 4 seconds 30 Helical states, polar profile, probability ring

Circuit Design

The QFRM uses a sophisticated quantum circuit architecture to encode market correlations and volatilities into quantum states.

Quantum Finance Circuit Diagram


โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘                         QUANTUM FINANCE RISK MODEL - 20 QUBIT CIRCUIT                                  โ•‘
โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ
โ•‘                                                                                                        โ•‘
โ•‘  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”        โ”Œโ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”€โ”€โ”                                           โ•‘
โ•‘  โ”‚ LAYER 1 โ”‚   โ”‚ LAYER 2 โ”‚   โ”‚ 3 โ”‚        โ”‚  4  โ”‚   โ”‚  5  โ”‚        โ”Œโ”€โ”€โ”€โ”                              โ•‘
โ•‘  โ”‚Volatilityโ”‚   โ”‚Correlateโ”‚   โ”‚MCXโ”‚        โ”‚RXX/Yโ”‚   โ”‚ CX  โ”‚        โ”‚ M โ”‚                              โ•‘
โ•‘  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”˜        โ””โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”€โ”€โ”˜        โ””โ”€โ”€โ”€โ”˜                              โ•‘
โ•‘                                                                                                        โ•‘
โ•‘  qโ‚€  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚€) โ”œโ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œโ”€โ”€cโ‚€       โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚                   โ”‚         โ”‚                                                โ•‘
โ•‘  qโ‚  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚) โ”œโ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œโ”€โ”€cโ‚       โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚    โ”‚               โ”‚         โ”‚    โ”‚                                          โ•‘
โ•‘  qโ‚‚  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚‚) โ”œโ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œโ”€โ”€cโ‚‚       โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚    โ”‚    โ”‚          โ”‚         โ”‚    โ”‚    โ”‚                                     โ•‘
โ•‘  qโ‚ƒ  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚ƒ) โ”œโ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œโ”€โ”€cโ‚ƒ       โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚    โ”‚    โ”‚    โ”‚     โ”‚         โ”‚    โ”‚    โ”‚    โ”‚                                โ•‘
โ•‘  qโ‚„  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚„) โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”€โ– โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œโ”€โ”€cโ‚„       โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ”Œโ”ดโ”        โ•‘    โ•‘    โ•‘    โ•‘    โ”‚                            โ•‘
โ•‘  qโ‚…  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚…) โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”คXโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œโ”€โ”€cโ‚…       โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ””โ”€โ”˜        โ•‘    โ•‘    โ•‘    โ•‘    โ”‚    โ”‚                       โ•‘
โ•‘             โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ•‘    โ•‘    โ•‘    โ•‘    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ•‘    โ•‘    โ•‘    โ•‘    โ”‚    โ”‚   โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”      โ•‘
โ•‘  qโ‚†  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚†) โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”คRXX(ฯโ‚€)โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”ค RISK STATE โ”œโ”€โ”€โ”คMโ”œ โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ”‚    โ”‚   โ”‚  ENCODER   โ”‚      โ•‘
โ•‘  qโ‚‡  โ”€|0โŸฉโ”€โ”€โ”ค RY(ฮธโ‚‡) โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”คRYY(ฯโ‚)โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”ค            โ”œโ”€โ”€โ”คMโ”œ โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ”‚    โ”‚   โ”‚  |ฯˆโŸฉ risk  โ”‚      โ•‘
โ•‘       โ‹ฎ                 โ‹ฎ    โ‹ฎ    โ‹ฎ    โ‹ฎ               โ‹ฎ    โ‹ฎ    โ‹ฎ    โ‹ฎ    โ‹ฎ    โ‹ฎ   โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜      โ•‘
โ•‘             โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ•‘    โ•‘    โ•‘    โ•‘               โ•‘    โ•‘    โ•‘    โ•‘                                 โ•‘
โ•‘  qโ‚โ‚ˆ โ”€|0โŸฉโ”€โ”€โ”คRY(ฮธโ‚โ‚ˆ) โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œ    โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ•‘    โ•‘    โ•‘    โ•‘                                 โ•‘
โ•‘  qโ‚โ‚‰ โ”€|0โŸฉโ”€โ”€โ”คRY(ฮธโ‚โ‚‰) โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”คRXX(ฯโ‚™)โ”œโ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ•ซโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”คMโ”œ    โ•‘
โ•‘             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ•‘    โ•‘    โ•‘    โ•‘                                 โ•‘
โ•‘                        CRZ  CRZ  CRZ  CRZ              X    X    X    X                                 โ•‘
โ•‘                       (ฯโ‚€โ‚)(ฯโ‚€โ‚‚)(ฯโ‚โ‚‚)(ฯโ‚‚โ‚ƒ)           โ•ฒ   โ•ฑ    โ•ฒ   โ•ฑ                                   โ•‘
โ•‘                        โ”‚    โ”‚    โ”‚    โ”‚                 โ•ฒ โ•ฑ      โ•ฒ โ•ฑ                                    โ•‘
โ•‘                        โ””โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”˜                  โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ—                                     โ•‘
โ•‘                     Correlation Encoding            Entanglement Network                                โ•‘
โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ
โ•‘  GATE LEGEND:                                                                                          โ•‘
โ•‘  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                                                                                            โ•‘
โ•‘  โ”‚ RY(ฮธ)  โ”‚ = Rotation-Y gate encoding asset volatility ฯƒแตข โ†’ ฮธแตข = 2ยทarcsin(โˆšฯƒแตข)                       โ•‘
โ•‘  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                                                                                            โ•‘
โ•‘  CRZ(ฯ)    = Controlled-RZ gate encoding correlation ฯแตขโฑผ between assets i,j                           โ•‘
โ•‘  MCX       = Multi-controlled X gate for market regime transitions                                     โ•‘
โ•‘  RXX/RYY   = Two-qubit rotation gates for temporal market dynamics                                     โ•‘
โ•‘  CX (โ—โ”€โ”€X) = CNOT gate for risk state measurement preparation                                         โ•‘
โ•‘  M         = Measurement in computational basis โ†’ classical bit                                        โ•‘
โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ
โ•‘  CIRCUIT STATISTICS:                                                                                   โ•‘
โ•‘  โ”œโ”€ Qubits: 20          โ”œโ”€ Depth: 127         โ”œโ”€ Total Gates: 312                                     โ•‘
โ•‘  โ”œโ”€ RY: 20              โ”œโ”€ CRZ: 48            โ”œโ”€ MCX: 6                                                โ•‘
โ•‘  โ”œโ”€ RXX: 20             โ”œโ”€ RYY: 20            โ”œโ”€ CX: 10                                                โ•‘
โ•‘  โ””โ”€ Shots: 5000         โ””โ”€ Backend: Aer       โ””โ”€ Method: statevector                                  โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Quantum State Encoding

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                     VOLATILITY โ†’ QUANTUM STATE                      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                                     โ”‚
โ”‚   Asset Volatility ฯƒแตข  โ”€โ”€โ”€โ–บ  ฮธแตข = 2ยทarcsin(โˆšฯƒแตข)  โ”€โ”€โ”€โ–บ  RY(ฮธแตข)|0โŸฉ   โ”‚
โ”‚                                                                     โ”‚
โ”‚   Example: AAPL ฯƒ = 0.25                                            โ”‚
โ”‚            ฮธ = 2ยทarcsin(โˆš0.25) = 2ยทarcsin(0.5) = ฯ€/3               โ”‚
โ”‚            |ฯˆโŸฉ = RY(ฯ€/3)|0โŸฉ = cos(ฯ€/6)|0โŸฉ + sin(ฯ€/6)|1โŸฉ           โ”‚
โ”‚                            = (โˆš3/2)|0โŸฉ + (1/2)|1โŸฉ                  โ”‚
โ”‚                                                                     โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                     CORRELATION โ†’ ENTANGLEMENT                      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                                     โ”‚
โ”‚   Correlation ฯแตขโฑผ  โ”€โ”€โ”€โ–บ  CRZ(ฯ€ยทฯแตขโฑผ)  โ”€โ”€โ”€โ–บ  Entangled State         โ”‚
โ”‚                                                                     โ”‚
โ”‚   High correlation (ฯ โ‰ˆ 1):  Strong entanglement                   โ”‚
โ”‚   Low correlation (ฯ โ‰ˆ 0):   Weak entanglement                     โ”‚
โ”‚   Anti-correlation (ฯ < 0):  Phase-flipped entanglement            โ”‚
โ”‚                                                                     โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Circuit Architecture Summary

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Quantum Finance Circuit (20 qubits)                      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Layer 1: RY gates      โ†’ Volatility encoding             โ”‚
โ”‚ Layer 2: CRZ gates     โ†’ Correlation entanglement        โ”‚
โ”‚ Layer 3: MCX gates     โ†’ Market regime transitions       โ”‚
โ”‚ Layer 4: RXX/RYY gates โ†’ Temporal dynamics               โ”‚
โ”‚ Layer 5: CX gates      โ†’ Risk measurement                โ”‚
โ”‚ Layer 6: Measurement   โ†’ State collapse                  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Risk Metrics

QFRM calculates comprehensive financial risk metrics combining traditional quantitative finance with quantum-derived insights.

CALC RiskMetricsCalculator.calculate_var(returns, confidence)

Calculate Value at Risk (VaR) - the maximum expected loss at a given confidence level.

Formula

VaR(ฮฑ) = -percentile(returns, 1-ฮฑ)

# Example: 95% VaR means we're 95% confident the loss won't exceed this value
var_95 = np.percentile(returns, 5)  # โ†’ -0.0268 (-2.68%)
CALC RiskMetricsCalculator.calculate_cvar(returns, confidence)

Calculate Conditional Value at Risk (CVaR) - the expected loss beyond the VaR threshold.

Formula

CVaR(ฮฑ) = E[X | X โ‰ค VaR(ฮฑ)]

# Average of all returns worse than VaR
cvar_95 = mean(returns[returns <= var_95])  # โ†’ -0.0429 (-4.29%)
CALC RiskMetricsCalculator.calculate_sharpe_ratio(returns)

Calculate Sharpe Ratio - risk-adjusted return metric.

Formula

Sharpe = (E[R] - Rf) / ฯƒ ร— โˆš252

# Annualized Sharpe Ratio with 2% risk-free rate
sharpe = (mean(returns) - 0.02/252) / std(returns) * sqrt(252)  # โ†’ 1.15

Output Files

QFRM generates comprehensive output files for analysis, reporting, and visualization.

๐Ÿ“Š
finance_risk_dashboard_*.png
Visual risk dashboard with 6 panels: 3D distribution, correlation heatmap, metrics bar chart, scatter plot, timeline, pie chart
~900 KB
๐Ÿ“ˆ
finance_risk_report_*.html
Interactive Plotly report with 3D scatter, heatmap, bar charts, and pie visualization
~4.8 MB
๐ŸŽฌ
quantum_risk_simulation_*.gif
4-second quantum risk simulation: 3D particles, 2D waves, real-time timeline
~12 MB
๐ŸŽฌ
risk_evolution_*.gif
4-second risk evolution simulation: 3D helix, 2D polar profile
~6.4 MB
๐Ÿ“‹
finance_risk_report_*.json
Comprehensive JSON data: all metrics, quantum results, performance data
~3 KB

Market Data Sources

QFRM fetches real-time market data from Yahoo Finance covering multiple asset classes.

Category Assets Count
Stocks AAPL, MSFT, GOOGL, AMZN, TSLA, JPM, V, JNJ, WMT, NVDA 10
Indices S&P 500 (^GSPC), NASDAQ (^IXIC), Dow Jones (^DJI), Russell 2000 (^RUT) 4
Commodities Gold (GC=F), Crude Oil (CL=F), Silver (SI=F) 3
Crypto Bitcoin (BTC-USD), Ethereum (ETH-USD) 2

Python API Reference

QFRM can be imported and used programmatically in your Python applications.

Example Usage

from qfrm import (
    FinancialDataLoader,
    QuantumFinanceCircuit,
    RiskMetricsCalculator,
    FinanceVisualizer,
    DynamicVisualizer
)

# Load market data
loader = FinancialDataLoader()
market_data = loader.fetch_market_data(period='6mo')
returns = loader.calculate_returns(market_data)
correlation, assets = loader.compute_correlation_matrix(returns)

# Build quantum circuit
qc = QuantumFinanceCircuit(n_qubits=20)
circuit = qc.build_market_circuit(
    correlation_matrix=correlation,
    volatility_vector=volatilities
)

# Run simulation
from qiskit_aer import AerSimulator
simulator = AerSimulator()
result = simulator.run(circuit, shots=5000).result()
counts = result.get_counts()

# Analyze results
quantum_results = qc.analyze_risk_states(counts)
print(f"Expected Quantum Risk: {quantum_results['expected_risk']:.4f}")