Overview
The Quantum Finance Risk Model (QFRM) is a cutting-edge financial risk analysis tool that combines quantum computing simulations with traditional risk metrics to provide comprehensive portfolio risk assessment.
Key Features
- Real-time market data from Yahoo Finance (19 assets across stocks, indices, commodities, crypto)
- 20-qubit quantum circuit for risk state analysis using IBM Qiskit
- Traditional metrics: VaR, CVaR, Sharpe Ratio, Maximum Drawdown, Volatility
- 4-second dynamic 3D/2D quantum risk simulations
- Cross-asset correlation matrices with entropy calculations
- Comprehensive JSON, PNG, HTML, GIF, and TXT output formats
Latest Results
Installation
Clone the repository and install dependencies to get started with QFRM.
Quick Install
# Clone the repository
git clone https://github.com/shellworlds/RMDNSTSW.git
cd RMDNSTSW
# Install dependencies
pip install -r requirements.txt
# Run the model
python qfrm.py
Requirements
| Package | Version | Purpose |
|---|---|---|
| qiskit | โฅ1.0.0 | Quantum circuit simulation |
| qiskit-aer | โฅ0.13.0 | Aer quantum simulator backend |
| yfinance | โฅ0.2.28 | Yahoo Finance market data |
| numpy | โฅ1.24.0 | Numerical computations |
| matplotlib | โฅ3.7.0 | Static & dynamic visualizations |
| plotly | โฅ5.14.0 | Interactive HTML reports |
Quick Start
Execute the quantum finance risk model with customizable parameters.
Command Line Options
| Option | Type | Default | Description |
|---|---|---|---|
| --qubits | int | 20 | Number of qubits in quantum circuit |
| --shots | int | 5000 | Number of quantum measurement shots |
| --output | string | ./finance_risk_output | Output directory for reports |
Example Commands
# Default execution (20 qubits, 5000 shots)
python qfrm.py
# Quick test with reduced parameters
python qfrm.py --qubits 10 --shots 1000
# High precision simulation
python qfrm.py --qubits 25 --shots 10000 --output ./high_precision
Expected Output
================================================================================
QUANTUM FINANCE RISK MODEL - EXECUTION COMPLETE
================================================================================
Generated Output Files:
๐ Dashboard PNG: ./RMDNSTSW/finance_risk_output/finance_risk_dashboard_*.png
๐ Interactive HTML: ./RMDNSTSW/finance_risk_output/finance_risk_report_*.html
๐ JSON Report: ./RMDNSTSW/finance_risk_output/finance_risk_report_*.json
๐ Text Summary: ./RMDNSTSW/finance_risk_output/risk_summary_*.txt
๐ฌ Simulation GIF: ./RMDNSTSW/finance_risk_output/quantum_risk_simulation_*.gif
๐ฌ Evolution GIF: ./RMDNSTSW/finance_risk_output/risk_evolution_*.gif
================================================================================
Dynamic Simulations
QFRM generates two 4-second GIF simulations showing quantum risk evolution in both 3D and 2D.
Quantum Risk Simulation
Risk Evolution Simulation
Simulation Specifications
| Simulation | Duration | FPS | Features |
|---|---|---|---|
| quantum_risk_simulation | 4 seconds | 30 | 50 particles, surface mesh, wave dynamics, timeline |
| risk_evolution | 4 seconds | 30 | Helical states, polar profile, probability ring |
Circuit Design
The QFRM uses a sophisticated quantum circuit architecture to encode market correlations and volatilities into quantum states.
Quantum Finance Circuit Diagram
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ QUANTUM FINANCE RISK MODEL - 20 QUBIT CIRCUIT โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฃ
โ โ
โ โโโโโโโโโโโ โโโโโโโโโโโ โโโโโ โโโโโโโ โโโโโโโ โ
โ โ LAYER 1 โ โ LAYER 2 โ โ 3 โ โ 4 โ โ 5 โ โโโโโ โ
โ โVolatilityโ โCorrelateโ โMCXโ โRXX/Yโ โ CX โ โ M โ โ
โ โโโโโโโโโโโ โโโโโโโโโโโ โโโโโ โโโโโโโ โโโโโโโ โโโโโ โ
โ โ
โ qโ โ|0โฉโโโค RY(ฮธโ) โโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโคMโโโcโ โ
โ โโโโโโโโโโ โ โ โ โ
โ qโ โ|0โฉโโโค RY(ฮธโ) โโโโผโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโคMโโโcโ โ
โ โโโโโโโโโโ โ โ โ โ โ โ
โ qโ โ|0โฉโโโค RY(ฮธโ) โโโโผโโโโโผโโโโโโโโโโโโโโโโผโโโโโโโโโโผโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโคMโโโcโ โ
โ โโโโโโโโโโ โ โ โ โ โ โ โ โ
โ qโ โ|0โฉโโโค RY(ฮธโ) โโโโผโโโโโผโโโโโผโโโโโโโโโโโผโโโโโโโโโโผโโโโโผโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโคMโโโcโ โ
โ โโโโโโโโโโ โ โ โ โ โ โ โ โ โ โ
โ qโ โ|0โฉโโโค RY(ฮธโ) โโโโซโโโโโซโโโโโซโโโโโซโโโโโโ โโโโโโโโโโซโโโโโซโโโโโซโโโโโซโโโโโโโโโโโโโโโโโโโคMโโโcโ โ
โ โโโโโโโโโโ โ โ โ โ โโดโ โ โ โ โ โ โ
โ qโ
โ|0โฉโโโค RY(ฮธโ
) โโโโซโโโโโซโโโโโซโโโโโซโโโโโคXโโโโโโโโโโซโโโโโซโโโโโซโโโโโซโโโโโผโโโโโโโโโโโโโโคMโโโcโ
โ
โ โโโโโโโโโโ โ โ โ โ โโโ โ โ โ โ โ โ โ
โ โโโโโโโโโโ โ โ โ โ โโโโโโโโโ โ โ โ โ โ โ โโโโโโโโโโโโโโ โ
โ qโ โ|0โฉโโโค RY(ฮธโ) โโโโซโโโโโซโโโโโซโโโโโซโโโโโคRXX(ฯโ)โโโโซโโโโโซโโโโโซโโโโโซโโโโโผโโโโโผโโโโค RISK STATE โโโโคMโ โ
โ โโโโโโโโโโ โ โ โ โ โโโโโโโโโ โ โ โ โ โ โ โ ENCODER โ โ
โ qโ โ|0โฉโโโค RY(ฮธโ) โโโโซโโโโโซโโโโโซโโโโโซโโโโโคRYY(ฯโ)โโโโซโโโโโซโโโโโซโโโโโซโโโโโผโโโโโผโโโโค โโโโคMโ โ
โ โโโโโโโโโโ โ โ โ โ โโโโโโโโโ โ โ โ โ โ โ โ |ฯโฉ risk โ โ
โ โฎ โฎ โฎ โฎ โฎ โฎ โฎ โฎ โฎ โฎ โฎ โโโโโโโโโโโโโโ โ
โ โโโโโโโโโโ โ โ โ โ โ โ โ โ โ
โ qโโ โ|0โฉโโโคRY(ฮธโโ) โโโโซโโโโโซโโโโโซโโโโโซโโโโโโโโโโโโโโโโซโโโโโซโโโโโซโโโโโซโโโโโโโโโโโโโโโโโโโโโโโโโโโคMโ โ
โ โโโโโโโโโโ โ โ โ โ โโโโโโโโโ โ โ โ โ โ
โ qโโ โ|0โฉโโโคRY(ฮธโโ) โโโโซโโโโโซโโโโโซโโโโโซโโโโโคRXX(ฯโ)โโโโซโโโโโซโโโโโซโโโโโซโโโโโโโโโโโโโโโโโโโโโโโโโโโคMโ โ
โ โโโโโโโโโโ โ โ โ โ โโโโโโโโโ โ โ โ โ โ
โ CRZ CRZ CRZ CRZ X X X X โ
โ (ฯโโ)(ฯโโ)(ฯโโ)(ฯโโ) โฒ โฑ โฒ โฑ โ
โ โ โ โ โ โฒ โฑ โฒ โฑ โ
โ โโโโโโดโโโโโดโโโโโ โโโโโโโโโโ โ
โ Correlation Encoding Entanglement Network โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฃ
โ GATE LEGEND: โ
โ โโโโโโโโโโ โ
โ โ RY(ฮธ) โ = Rotation-Y gate encoding asset volatility ฯแตข โ ฮธแตข = 2ยทarcsin(โฯแตข) โ
โ โโโโโโโโโโ โ
โ CRZ(ฯ) = Controlled-RZ gate encoding correlation ฯแตขโฑผ between assets i,j โ
โ MCX = Multi-controlled X gate for market regime transitions โ
โ RXX/RYY = Two-qubit rotation gates for temporal market dynamics โ
โ CX (โโโX) = CNOT gate for risk state measurement preparation โ
โ M = Measurement in computational basis โ classical bit โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฃ
โ CIRCUIT STATISTICS: โ
โ โโ Qubits: 20 โโ Depth: 127 โโ Total Gates: 312 โ
โ โโ RY: 20 โโ CRZ: 48 โโ MCX: 6 โ
โ โโ RXX: 20 โโ RYY: 20 โโ CX: 10 โ
โ โโ Shots: 5000 โโ Backend: Aer โโ Method: statevector โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Quantum State Encoding
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ VOLATILITY โ QUANTUM STATE โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ Asset Volatility ฯแตข โโโโบ ฮธแตข = 2ยทarcsin(โฯแตข) โโโโบ RY(ฮธแตข)|0โฉ โ
โ โ
โ Example: AAPL ฯ = 0.25 โ
โ ฮธ = 2ยทarcsin(โ0.25) = 2ยทarcsin(0.5) = ฯ/3 โ
โ |ฯโฉ = RY(ฯ/3)|0โฉ = cos(ฯ/6)|0โฉ + sin(ฯ/6)|1โฉ โ
โ = (โ3/2)|0โฉ + (1/2)|1โฉ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ CORRELATION โ ENTANGLEMENT โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ Correlation ฯแตขโฑผ โโโโบ CRZ(ฯยทฯแตขโฑผ) โโโโบ Entangled State โ
โ โ
โ High correlation (ฯ โ 1): Strong entanglement โ
โ Low correlation (ฯ โ 0): Weak entanglement โ
โ Anti-correlation (ฯ < 0): Phase-flipped entanglement โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Circuit Architecture Summary
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Quantum Finance Circuit (20 qubits) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ Layer 1: RY gates โ Volatility encoding โ
โ Layer 2: CRZ gates โ Correlation entanglement โ
โ Layer 3: MCX gates โ Market regime transitions โ
โ Layer 4: RXX/RYY gates โ Temporal dynamics โ
โ Layer 5: CX gates โ Risk measurement โ
โ Layer 6: Measurement โ State collapse โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Risk Metrics
QFRM calculates comprehensive financial risk metrics combining traditional quantitative finance with quantum-derived insights.
Calculate Value at Risk (VaR) - the maximum expected loss at a given confidence level.
Formula
VaR(ฮฑ) = -percentile(returns, 1-ฮฑ)
# Example: 95% VaR means we're 95% confident the loss won't exceed this value
var_95 = np.percentile(returns, 5) # โ -0.0268 (-2.68%)
Calculate Conditional Value at Risk (CVaR) - the expected loss beyond the VaR threshold.
Formula
CVaR(ฮฑ) = E[X | X โค VaR(ฮฑ)]
# Average of all returns worse than VaR
cvar_95 = mean(returns[returns <= var_95]) # โ -0.0429 (-4.29%)
Calculate Sharpe Ratio - risk-adjusted return metric.
Formula
Sharpe = (E[R] - Rf) / ฯ ร โ252
# Annualized Sharpe Ratio with 2% risk-free rate
sharpe = (mean(returns) - 0.02/252) / std(returns) * sqrt(252) # โ 1.15
Output Files
QFRM generates comprehensive output files for analysis, reporting, and visualization.
Market Data Sources
QFRM fetches real-time market data from Yahoo Finance covering multiple asset classes.
| Category | Assets | Count |
|---|---|---|
| Stocks | AAPL, MSFT, GOOGL, AMZN, TSLA, JPM, V, JNJ, WMT, NVDA | 10 |
| Indices | S&P 500 (^GSPC), NASDAQ (^IXIC), Dow Jones (^DJI), Russell 2000 (^RUT) | 4 |
| Commodities | Gold (GC=F), Crude Oil (CL=F), Silver (SI=F) | 3 |
| Crypto | Bitcoin (BTC-USD), Ethereum (ETH-USD) | 2 |
Python API Reference
QFRM can be imported and used programmatically in your Python applications.
Example Usage
from qfrm import (
FinancialDataLoader,
QuantumFinanceCircuit,
RiskMetricsCalculator,
FinanceVisualizer,
DynamicVisualizer
)
# Load market data
loader = FinancialDataLoader()
market_data = loader.fetch_market_data(period='6mo')
returns = loader.calculate_returns(market_data)
correlation, assets = loader.compute_correlation_matrix(returns)
# Build quantum circuit
qc = QuantumFinanceCircuit(n_qubits=20)
circuit = qc.build_market_circuit(
correlation_matrix=correlation,
volatility_vector=volatilities
)
# Run simulation
from qiskit_aer import AerSimulator
simulator = AerSimulator()
result = simulator.run(circuit, shots=5000).result()
counts = result.get_counts()
# Analyze results
quantum_results = qc.analyze_risk_states(counts)
print(f"Expected Quantum Risk: {quantum_results['expected_risk']:.4f}")