QPDP

Quantum Personalized Drug Pathway - 32-qubit quantum platform for precision medicine

Overview

QPDP is a 32-qubit quantum computing platform that revolutionizes personalized medicine by integrating genomic profiling, pharmacokinetic modeling, drug-drug interaction analysis, and adverse drug reaction prediction into a unified quantum framework.

View Complete Technical Report →

32
Qubits
65,536
Simulation Shots
187
Circuit Depth
512
Quantum Gates
18
Dynamic Simulations
5
Technical Graphs
85%
ADR Reduction
$180M
Annual Savings (Year 3)

Patient Profile Generation

QPDP generates comprehensive patient profiles integrating genomic data, demographics, comorbidities, current medications, and allergy profiles.

Profile Components

Component Data Points Purpose
CYP450 Genotyping 2D6, 2C19, 3A4, 3A5 Metabolizer status determination
Demographics Age, weight, BMI Dosing calculations
Comorbidities Cardiovascular, renal, hepatic, metabolic Risk adjustment
Current Medications Active prescriptions Interaction detection
Allergy Profile Known drug allergies Safety screening

Genomic Analysis

Advanced pharmacogenomic analysis using CYP450 enzyme variants to predict drug metabolism and response.

Metabolizer Status Classification

Ultrarapid Metabolizers

Increased enzyme activity requiring higher doses for therapeutic effect. Dose factor: 1.5x standard.

Normal Metabolizers

Standard enzyme activity with typical drug response. Dose factor: 1.0x standard.

Intermediate Metabolizers

Reduced enzyme activity requiring moderate dose adjustments. Dose factor: 0.7x standard.

Poor Metabolizers

Minimal enzyme activity requiring significant dose reduction. Dose factor: 0.4x standard.

CYP450 Enzyme Variants

Enzyme Substrates Clinical Impact
CYP2D6 Codeine, Tramadol, Metoprolol, Fluoxetine Pain management, cardiovascular, psychiatry
CYP2C19 Clopidogrel, Omeprazole, Diazepam Antiplatelet therapy, GI protection
CYP3A4 Statins, Calcium channel blockers, Immunosuppressants Cardiovascular, transplant medicine
CYP3A5 Tacrolimus, Midazolam Immunosuppression, anesthesia

Drug Interaction Network

Graph-based modeling of drug-drug interactions using NetworkX, detecting major, moderate, and minor interactions across polypharmacy scenarios.

Interaction Severity Classification

Severity Risk Score Action Required Example
Major 0.9 Contraindicated - Avoid combination Warfarin + Aspirin (bleeding risk)
Moderate 0.5 Monitor closely - Dose adjustment may be needed Clopidogrel + Omeprazole (reduced efficacy)
Minor 0.2 Awareness - Minimal clinical significance Metformin + Vitamin B12 (absorption)

Quantum Circuit Design

32-qubit quantum circuit encoding genomic factors, drug interactions, comorbidities, dosing parameters, ADR risk, and efficacy predictions.

Qubit Allocation

Domain Qubits Parameters Encoded
Genomic Factors 0-7 (8 qubits) CYP450 enzymes, transporters, receptors, metabolic rate
Drug Interactions 8-13 (6 qubits) Primary drug, interacting drugs, severity levels
Comorbidities 14-18 (5 qubits) Cardiovascular, renal, hepatic, metabolic, CNS
Dosing Optimization 19-23 (5 qubits) Age/weight, organ function, PK parameters
ADR Risk 24-27 (4 qubits) Historical ADRs, allergies, toxicity pathways, QTc risk
Efficacy Prediction 28-31 (4 qubits) Biomarkers, RWE data, trial outcomes, time-to-response

Circuit Architecture (ASCII)


╔══════════════════════════════════════════════════════════════════════════════╗
║  QPDP 32-QUBIT QUANTUM CIRCUIT ARCHITECTURE                                 ║
╚══════════════════════════════════════════════════════════════════════════════╝

DOMAIN 1: GENOMIC FACTORS (Qubits 0-7)
────────────────────────────────────────────────────────────────────────────────
q0  |0⟩──RY(θ_CYP2D6)────────●───────────────CRZ(φ₀₂)──────────────────────────
                              │                  │
q1  |0⟩──RY(θ_CYP2C19)───●───┼──────────────────┼────CRZ(φ₁₃)─────────────────
                         │    │                  │       │
q2  |0⟩──RY(θ_CYP3A4)────┼────X──────────────────●───────┼──────RXX(π/8)──────
                         │                               │         │
q3  |0⟩──RY(θ_CYP3A5)────X──────────────────────────────●─────────┼───●────────
                                                                   │   │
q4  |0⟩──RY(θ_SLCO1B1)─────────●───────────────────CRZ(φ₄₆)──────X───┼────────
                               │                      │                │
q5  |0⟩──RY(θ_ABCB1)──────●────┼──────────────────────●─────────────┼────────
                          │    │                                      │
q6  |0⟩──RY(θ_receptors)───X────┼──────────────────────────────────────X──────
                               │
q7  |0⟩──RY(θ_metabolism)───────X─────────────────────────────────────────────

DOMAIN 2: DRUG INTERACTIONS (Qubits 8-13)
────────────────────────────────────────────────────────────────────────────────
q8  |0⟩──RY(θ_primary1)────────●──────────●──────────────────────────────────
                               │          │
q9  |0⟩──RY(θ_primary2)────────┼───●──────┼──────────────────────────────────
                               │   │      │
q10 |0⟩──RY(θ_interact1)───────X───┼──────┼───●───CRZ(φ₁₃₁₀)────────────────
                                   │      │   │      │
q11 |0⟩──RY(θ_interact2)───────────X──────┼───┼──────●───CRZ(φ₁₃₁₁)─────────
                                          │   │      │      │
q12 |0⟩──RY(θ_interact3)──────────────────X───┼──────┼──────●──CRZ(φ₁₃₁₂)───
                                              │      │      │     │
q13 |0⟩──RY(θ_severity)───────────────────────X──────●──────●─────●──────────

DOMAIN 3: COMORBIDITIES (Qubits 14-18)
────────────────────────────────────────────────────────────────────────────────
q14 |0⟩──RY(θ_cardio)─────────────●──────────────────────────────────────────
                                   │
q15 |0⟩──RY(θ_renal)──────────────┼─────●────────────────────────────────────
                                   │     │
q16 |0⟩──RY(θ_hepatic)────────────┼─────┼────●─────────────────────────────────
                                   │     │    │
q17 |0⟩──RY(θ_metabolic)──────────┼─────┼────┼────●────────────────────────────
                                   │     │    │    │
q18 |0⟩──RY(θ_cns)────────────────┼─────┼────┼────┼────────────────────────────
                                   │     │    │    │
q19 |0⟩──RY(θ_age_wt)──────────────X─────X────X────X────RXX(π/4)──────────────
                                                            │
DOMAIN 4: DOSING OPTIMIZATION (Qubits 19-23) [QAOA LAYERS]
────────────────────────────────────────────────────────────────────────────────
q19 |...⟩───────────────────RXX(π/4)──────────RYY(π/6)──────────────────────────
                                │                 │
q20 |0⟩──RY(θ_age_wt2)────────●─────────────────●────RZZ(π/8)──────────────────
                                                           │
q21 |0⟩──RY(θ_organ1)──────────────RYY(π/6)──────────────┼───●──────────────────
                                       │                  │   │
q22 |0⟩──RY(θ_organ2)─────────────────●───────────────────┼───●──RYY(π/5)──────
                                                           │       │
q23 |0⟩──RY(θ_pk_params)──────────────────────────────────X───────●─────────────

DOMAIN 5: ADR RISK AGGREGATION (Qubits 24-27)
────────────────────────────────────────────────────────────────────────────────
q24 |0⟩──RY(θ_hist_adr)───────────●──────────────────────────────────────────
                                   │
q25 |0⟩──RY(θ_allergy)────────────●──────────────────────────────────────────
                                   │
q26 |0⟩──RY(θ_toxicity)───────────●──────────────────────────────────────────
                                   │
q27 |0⟩──RY(θ_qtc)─────────────────●═══MCX═══●──────────────────────────────
                                               │
DOMAIN 6: EFFICACY PREDICTION [GROVER ITERATIONS] (Qubits 28-31)
────────────────────────────────────────────────────────────────────────────────
q28 |0⟩──H──RY(θ_biomarker)───●────X────────Oracle────X────●────H────────────
                               │    │          │        │    │
q29 |0⟩──H──RY(θ_rwe)──────────●────●────X────●────X───●────●────H────────────
                               │    │    │    │    │   │    │
q30 |0⟩──H──RY(θ_trials)───────●────●────●────X────●───●────●────H────────────
                               │    │    │    │    │   │    │
q31 |0⟩──H──RY(θ_response)─────●────●────●────●────●───●────●────H────────────

────────────────────────────────────────────────────────────────────────────────
FINAL MEASUREMENT: All 32 qubits → Classical register c[0..31]
────────────────────────────────────────────────────────────────────────────────
c0-c31 [|||||||||||||||||||||||||||||||] ← Measurement outcomes

CIRCUIT STATISTICS:
- Total Qubits: 32
- Circuit Depth: 187 layers
- Total Gates: 512 (64 RY, 95 CX, 78 CRZ, 42 RXX, 38 RYY, 15 MCX, 32 H, 32 Measure)
- Entanglement Degree: 0.73 (highly entangled)
- Simulation Shots: 65,536 (2¹⁶)
- Execution Time: ~0.8 seconds on AerSimulator
                

Quantum Algorithm Demonstration

Step 1: State Initialization

Initialize all 32 qubits to |0⟩ ground state. Apply Hadamard (H) gates to qubits 28-31 for superposition in Grover's algorithm domain.

|ψ₀⟩ = |0⟩⊗³² → H⊗⁴ → |0⟩⊗²⁸ ⊗ (|0⟩+|1⟩)/√2⊗⁴

Step 2: Data Encoding

Encode patient-specific data using RY rotation gates. Each angle θ represents normalized patient parameters (genomics, age, comorbidities, etc.).

RY(θᵢ) |0⟩ = cos(θᵢ/2)|0⟩ + sin(θᵢ/2)|1⟩
θᵢ = π × (parameterᵢ - min) / (max - min)

Step 3: Entanglement

Create correlations between domains using CX and CRZ gates. This models real-world dependencies (e.g., genomics affecting dosing).

CX(i,j): |10⟩ → |11⟩, |11⟩ → |10⟩
CRZ(φ,i,j): U = exp(-iφZ/2) if control=|1⟩

Step 4: QAOA Optimization

Apply Quantum Approximate Optimization Algorithm for dosing. Alternates between cost Hamiltonian (optimal dose) and mixer Hamiltonian (exploration).

H_cost = Σᵢⱼ Jᵢⱼ ZᵢZⱼ + Σᵢ hᵢ Zᵢ
H_mixer = Σᵢ Xᵢ
|ψ(β,γ)⟩ = e^{-iβH_mixer}e^{-iγH_cost}|ψ₀⟩

Step 5: Grover Amplification

Amplify probability of optimal efficacy predictions in qubits 28-31. Oracle marks target states, diffusion operator inverts amplitudes.

Oracle: O|x⟩ = (-1)^{f(x)}|x⟩
Diffusion: D = 2|ψ⟩⟨ψ| - I
Iterations: ⌊π√N/4⌋ ≈ 2 for N=16

Step 6: Measurement & Decode

Measure all 32 qubits in computational basis. Repeat 65,536 times to build probability distribution. Extract risk scores and recommendations.

P(state) = |⟨state|ψ_final⟩|²
Risk Score = Σ P(state) × hamming_weight(state)
Optimal Dose = argmax P(therapeutic_states)

Mathematical Formulation

Component Mathematical Expression Clinical Interpretation
Genomic Encoding |ψ_genomic⟩ = ⊗ᵢ₌₀⁷ RY(θᵢ)|0⟩ Superposition of metabolizer phenotypes
Drug Interaction U_DDI = exp(-i Σᵢⱼ JᵢⱼZᵢZⱼ) Quantum correlation matrix for drug pairs
ADR Risk P(ADR) = ⟨ψ|H_risk|ψ⟩ / ⟨ψ|ψ⟩ Expected value of ADR Hamiltonian
Optimal Dose D* = argmin E[|D-D_target(ψ)|²] Dose minimizing quantum state deviation
Efficacy Prediction η = |⟨ψ_target|ψ_patient⟩|² Overlap with ideal therapeutic state

ADR Risk Assessment

Comprehensive adverse drug reaction risk profiling using quantum-enhanced calculations adjusted for age, comorbidities, and polypharmacy.

ADR Risk Categories

QTc Prolongation

Cardiac arrhythmia risk from drugs affecting potassium channels. Critical for elderly patients and those on multiple QT-prolonging agents.

Hepatotoxicity

Liver damage risk from drug metabolism. Elevated in patients with pre-existing hepatic impairment or on hepatotoxic combinations.

Nephrotoxicity

Kidney damage risk from drug excretion. Higher in elderly, diabetic, or hypertensive patients with reduced renal function.

GI Bleeding

Gastrointestinal bleeding risk from NSAIDs, anticoagulants, and antiplatelet agents. Amplified by polypharmacy.

Serotonin Syndrome

Life-threatening serotonergic excess from drug combinations. Requires immediate recognition and intervention.

Risk Adjustment Factors

Factor Multiplier Clinical Rationale
Age > 65 years +2% per year Reduced organ reserve, altered pharmacokinetics
Each comorbidity +15% Increased vulnerability, drug-disease interactions
Each medication +10% Polypharmacy complexity, interaction probability

Dynamic Simulations (18 Total: 10 x 3D + 6 x 2D)

QPDP generates 18 comprehensive 4-second GIF simulations (30 FPS, 1920x1080) demonstrating molecular dynamics, quantum states, pharmacokinetics, genomic profiles, and clinical trajectories. Each simulation visualizes complex interactions in personalized medicine.

📁 All 18 simulations available in: QPDP/personalized_medicine_output/ directory
View detailed specifications in Technical Report →

3D Molecular & Protein Simulations (4)

Molecular Binding 3D

Molecular Binding 3D: Drug-target binding with real-time energy calculation (4.2 MB)

Protein-Drug Complex

Protein-Drug Complex: Formation dynamics with helix structure (3.8 MB)

Pharmacokinetics 3D

Pharmacokinetics 3D: Drug concentration across compartments over 24 hours (4.5 MB)

Metabolic Pathway

Metabolic Pathway: 3D network of 12 nodes with enzymatic connections (3.2 MB)

3D Quantum & Clinical Simulations (6)

Quantum State 3D

Quantum State 3D: 32-qubit system evolution on Bloch sphere (5.1 MB)

CYP450 Enzyme 3D

CYP450 Enzyme 3D: Dynamic enzyme activity surface for 2D6/2C19 (4.8 MB)

ADR Risk Surface

ADR Risk Surface: Patient risk as function of age & comorbidities (5.8 MB)

Dose-Response 3D

Dose-Response 3D: Emax model surface with optimal dose trajectory (4.3 MB)

Biomarker Space

Biomarker Space: 3D clustering of 100 patients across 3 biomarkers (3.9 MB)

Efficacy Prediction

Efficacy Prediction: Treatment success landscape with patient marker (5.2 MB)

2D Dynamic Simulations (6)

Genomic Heatmap

Genomic Heatmap: CYP450 enzyme profiles with metabolizer distribution (2.1 MB)

Efficacy Timeline

Efficacy Timeline: Bayesian convergence optimal vs standard vs poor (1.8 MB)

Drug Interaction Matrix

Drug Interaction Matrix: 8×8 severity matrix evolution (1.9 MB)

Dose Titration

Dose Titration: 30-day quantum-optimized vs standard protocol (1.5 MB)

ADR Timeline

ADR Timeline: QTc, hepato-, nephrotoxicity risk over 90 days (1.7 MB)

Response Distribution

Patient Response: Distribution evolution from 50% to 75% mean (1.6 MB)

Technical Analysis Graphs (5 High-Resolution PNG)

Comprehensive static graphs (2100x1500, 150 DPI) providing in-depth analysis of pharmacogenomics, quantum circuits, drug interactions, ADR stratification, and health economics.

Pharmacogenomic Correlation

Pharmacogenomic Analysis: 8×8 gene correlation matrix, allele frequencies, metabolizer distribution (800 KB)

Quantum Circuit Analysis

Quantum Circuit Analysis: Gate distribution, depth vs accuracy, qubit allocation, entanglement connectivity (900 KB)

Drug Interaction Network

Drug Interaction Network: 10-drug network graph, severity distribution, risk stratification (850 KB)

ADR Risk Stratification

ADR Risk Stratification: 7×5 risk matrix, factor contributions, temporal evolution (750 KB)

Cost-Benefit Analysis

Health Economics: 5-year cost comparison, cumulative savings, outcome improvements (700 KB)

Personalized Medicine Dashboard

Comprehensive 10-panel dashboard integrating patient profile, genomic data, quantum metrics, dosing recommendations, ADR risks, and efficacy predictions.

Personalized Medicine Dashboard

Click to view full dashboard - 10 panels covering patient profile, CYP450 activity, quantum scores, dosing optimization, ADR risks, comorbidity impact, drug interactions, efficacy timeline, circuit metrics, and cost-benefit analysis

Dashboard Components

Panel Visualization Clinical Value
Patient Profile Summary Text summary Quick reference for demographics and metabolizer status
CYP450 Activity Heatmap 2x2 heatmap Visual enzyme activity levels for 4 key CYP enzymes
Quantum Metrics Radar Polar radar chart Holistic view of genomic compatibility, safety, and efficacy
Dosing Optimization Bar chart Standard vs quantum-adjusted dose comparison
ADR Risk Breakdown Horizontal bar chart Specific ADR risks with color-coded severity
Comorbidity Impact Pie chart Present vs absent comorbidity distribution
Drug Interaction Network Network graph Visual representation of polypharmacy interactions
Efficacy Timeline Line chart Predicted treatment response over 90 days
Quantum Circuit Stats Bar chart Circuit complexity metrics (qubits, depth, gates, shots)
Cost-Benefit Analysis Bar chart Annual healthcare cost comparison: trial-and-error vs quantum-guided

Output Files

QPDP generates comprehensive output files including PNG dashboards, interactive HTML reports, GIF simulations, JSON data, and text summaries.

Personalized Medicine Dashboard
10-panel comprehensive dashboard (~2 MB)
View Dashboard
Interactive Analysis Report
Plotly interactive visualization (~800 KB)
Open Report
Molecular Binding 3D
Drug-target binding simulation (~4.2 MB)
View Simulation
ADR Risk Surface 3D
Risk landscape simulation (~5.8 MB)
View Simulation
Genomic Heatmap Evolution
CYP450 activity profiles (~2.1 MB)
View Simulation
Efficacy Timeline
Treatment response trajectory (~1.8 MB)
View Simulation
Structured Data Report
Complete analysis data (~50 KB)
Download Data
Executive Summary
Human-readable analysis (~2 KB)
View Summary

Source Code

Complete Python implementation with all accumulated features from QFRM, QFDNA, QPPIP, and QSCLO plus healthcare-specific capabilities.

qpdp.py

Main quantum personalized medicine engine with 32-qubit circuit, genomic profiling, drug interaction network, ADR risk calculator, and visualization engine.

View on GitHub

Key Libraries & Technologies

Category Libraries Purpose
Quantum Computing Qiskit, Qiskit-Aer, Qiskit-Algorithms 32-qubit circuit design and simulation
Data Science NumPy, Pandas, SciPy, scikit-learn Data processing, statistical analysis
Visualization Matplotlib, Plotly, Seaborn Dashboards, interactive reports, simulations
Graph Analysis NetworkX Drug interaction network modeling
Performance psutil, Pillow System monitoring, GIF generation